ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:67.50KB ,
资源ID:517357      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-517357.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《推出和充分条件、必要条件》教案2(新人教b版选修2-1).doc)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

《推出和充分条件、必要条件》教案2(新人教b版选修2-1).doc

1、12 充分条件与必要条件(一)教学目标1.知识与技能:正确理解充分不必要条件、必要不充分条件的概念;会判断命题的充分条件、必要条件2.过程与方法:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力 情感、态度与价值观:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育(二)教学重点与难点重点:充分条件、必要条件的概念(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证)难点:判断命题的充分条件、必要条件关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件(三)教学过

2、程1练习与思考写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若 x a 2 + b2,则 x 2ab,(2)若 ab 0,则 a 0.学生容易得出结论;命题(1)为真命题,命题()为假命题置疑:对于命题“若 p,则 q”,有时是真命题,有时是假命题如何判断其真假的?答:看 p 能不能推出 q,如果 p 能推出 q,则原命题是真命题,否则就是假命题给出定义命题“若 p,则 q” 为真命题,是指由 p 经过推理能推出 q,也就是说,如果 p 成立,那么 q 一定成立换句话说,只要有条件 p 就能充分地保证结论 q 的成立,这时我们称条件 p 是 q 成立的充分条件一般地, “若 p

3、,则 q”为真命题,是指由 p 通过推理可以得出 q这时,我们就说,由 p 可推出 q,记作:pq定义:如果命题“若 p,则 q”为真命题,即 p q,那么我们就说 p 是 q 的充分条件;q是 p 必要条件上面的命题(1)为真命题,即x a 2 + b2 x 2ab,所以“x a 2 + b2 ”是“x 2ab”的充分条件, “x 2ab”是“x a 2 + b2” 的必要条件3例题分析:例:下列“若 p,则 q”形式的命题中,那些命题中的 p 是 q 的充分条件?(1)若 x 1,则 x2 4x 3 0;(2)若 f(x) x,则 f(x)为增函数;(3)若 x 为无理数,则 x2为无理数

4、分析:要判断 p 是否是 q 的充分条件,就要看 p 能否推出 q解略例:下列“若 p,则 q”形式的命题中,那些命题中的 q 是 p 的必要条件?(1)若 x y,则 x2 y 2;(2)若两个三角形全等,则这两个三角形的面积相等;(3)若 a b,则 acbc分析:要判断 q 是否是 p 的必要条件,就要看 p 能否推出 q解略练习巩固:P12 练习 第 1、2、3、4 题课堂总结充分、必要的定义在“若 p,则 q”中,若 pq,则 p 为 q 的充分条件,q 为 p 的必要条件作业P14:习题 1.2A 组第 1(1)(2),2(1)(2)题注:(1)条件是相互的;(2)p 是 q 的什

5、么条件,有四种回答方式: p 是 q 的充分而不必要条件; p 是 q 的必要而不充分条件; p 是 q 的充要条件; p 是 q 的既不充分也不必要条件1.2.2 充要条件 (一)教学目标1.知识与技能目标:() 正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义() 正确判断充分不必要条件、 必要不充分条件、充要条件、 既不充分也不必要条件.() 通过学习,使学生明白对条件的判定应该归结为判断命题的真假,2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质3. 情感、态度与价值观:激发学生的学习热情,激发学生的求知欲

6、,培养严谨的学习态度,培养积极进取的精神(二)教学重点与难点重点:1、正确区分充要条件2、正确运用“条件”的定义解题难点:正确区分充要条件(三)教学过程1.思考、分析已知 p:整数 a 是 2 的倍数;q:整数 a 是偶数.请判断: p 是 q 的充分条件吗?p 是 q 的必要条件吗?分析:要判断 p 是否是 q 的充分条件,就要看 p 能否推出 q,要判断 p 是否是 q 的必要条件,就要看 q 能否推出 p易知:pq,故 p 是 q 的充分条件;又 q p,故 p 是 q 的必要条件此时,我们说, p 是 q 的充分必要条件.类比归纳一般地,如果既有 pq ,又有 qp 就记作p q.此时

7、,我们说,那么 p 是 q 的充分必要条件,简称充要条件.显然,如果 p 是 q 的充要条件,那么 q 也是 p 的充要条件.概括地说,如果 p q,那么 p 与 q 互为充要条件.3.例题分析例 1:下列各题中,哪些 p 是 q 的充要条件?() p:b0,q:函数 f(x)ax 2bxc 是偶函数;() p:x 0,y 0,q: xy 0;() p: a b ,q: a + c b + c;() p:x 5, ,q: x 10() p: a b ,q: a 2 b 2分析:要判断 p 是 q 的充要条件,就要看 p 能否推出 q,并且看 q 能否推出 p解:命题()和()中,pq ,且 q

8、p,即 p q,故 p 是 q 的充要条件;命题()中,pq ,但 q p,故 p 不是 q 的充要条件;命题()中,pq ,但 qp,故 p 不是 q 的充要条件; 命题()中,pq ,且 qp,故 p 不是 q 的充要条件;类比定义一般地,若 pq ,但 q p,则称 p 是 q 的充分但不必要条件;若 pq,但 q p,则称 p 是 q 的必要但不充分条件;若 pq,且 q p,则称 p 是 q 的既不充分也不必要条件在讨论 p 是 q 的什么条件时,就是指以下四种之一:若 pq ,但 q p,则 p 是 q 的充分但不必要条件;若 qp,但 p q,则 p 是 q 的必要但不充分条件;

9、若 pq,且 qp,则 p 是 q 的充要条件;若 p q,且 q p,则 p 是 q 的既不充分也不必要条件练习巩固:P14 练习第 1、2 题说明:要求学生回答 p 是 q 的充分但不必要条件、或 p 是 q 的必要但不充分条件、或 p 是q 的充要条件、或 p 是 q 的既不充分也不必要条件例题分析例 2:已知:O 的半径为 r,圆心 O 到直线 l 的距离为 d求证:dr 是直线 l 与O 相切的充要条件分析:设 p:dr,q:直线 l 与O 相切要证 p 是 q 的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可证明过程略例 3、设 p 是 r 的充分而不必要条件,q 是 r 的充分条件,r 成立,则 s 成立s 是 q 的充分条件,问(1)s 是 r 的什么条件?(2)p 是 q 的什么条件?课堂总结:充要条件的判定方法如果“若 p,则 q”与“ 若 p 则 q”都是真命题,那么 p 就是 q 的充要条件,否则不是作业:P1:习题 1.2A 组第 1(3)(2),2(3),3 题

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报