ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:94KB ,
资源ID:5105228      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5105228.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(八年级数学上册人教版教学设计:15.3.1 分式方程(2课时).doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

八年级数学上册人教版教学设计:15.3.1 分式方程(2课时).doc

1、池河中学 2017-2018 学年度第一学期教学设计年级 八 科目 数学 任课教师 刘文英 授课时间 1.2课题 15.3.1 分式方程(2 课时) 授课类型 新课课标依据能解可化为一元一次方程的分式方程,能根据具体问题中的数量关系列出方程(分式方程),体会方程是刻画现实世界数量关系的有效模型。知识与来源:学优高考网 gkstk技能1了解分式方程的概念来源:学优高考网 gkstk2掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根3理解产生增根的原因,从而加深对验根的必要性的认识来源:学优高考网 gkstk来源: 学优高考网 gkstk过程与方法1经历探索分式

2、方程的解法的过程,体验解分式方程的关键是去分母2将分式方程转化为整式方程,在解题过程中体会转化思想方法的运用教学目标情感态度与价值观1在解分式方程的过程中培养学生严谨的学习态度2在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值教学重点难点教学重点会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根编号:44教学难点理解解分式方程时产生增根的原因教学过程设计师生活动 设计意图一、创设情境,实例引入教师活动:从本章引言中的航行问题说起,引导学生从分析入手,列出分母中含未知数的方程,为归纳出分式方程的概念,探索分式方程的解法做准备。问题:一艘

3、轮船在静水中的最大航速为 20 千米/小时,它沿江以最大航速顺流航行 100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?学生活动:充分思考后各抒己见分析:设江水的流速为 v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程 v2061.二、归纳定义,抓住关键分式方程定义: 分母中含未知数的方程叫做分式方程.注意:分母是否含有末知数是区别分式方程与整式方程的关键。练习:下列关于 X 的方程中,哪些是分式方程?哪些是整式方程?三、探究分析,归纳解法怎样解分式方程,是本节的核心问题,引导学生运用转化的思想,把待解决的问题或未解决的问题,化归到已经解决或

4、比较容易解决的问题,探究出解分式方程的方法和一般步骤1、首先引导学生复习解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为 1。2、老师提出问题:我们已经熟悉一元一次方程的解法,但是分式方程中的分母中含有未知数,能否将分式方程转通过问题导引,从知识的发展所需和实际问题的解决所求,不论是情景问题的解决还是方程的完善,都能让学生顺其自然地感受到分式方程“势在必学”.13(2)x(1)4)x3(x1026ax)(247y化为整式方程呢?3、师生探讨得出结论:我们可以方程两边都乘以各分母的最简公分母,把分母去掉,转化为熟悉的一元一次方程。思考:(1)怎样才能解 v2061这个方程呢?

5、解:方程两边同乘最简公分母 )(,得 )20(6)(10vv,解得, 5检验:把 代入原分式方程中,左边=4=右边,因此5v是原分式方程的解。所以,解分式分式方程的一般思路分式方程 整式方程(2)再讨论一个分式方程 2510x为去分母,方程两边同乘最简公分母 )(,得105x,解得 5x,检验:把 代入原分式方程中,分母 25x和 的值都为 0,分式无意义,因此, 虽是整式方程15x的解,但不是原分式方程 1052x的解,所以,这个分式方程无解。4、师生通过两个方程的对比,共同探讨分式方程无解的原因,给出增根的概念,并总结出解分式方程的一般方法和步骤通过自主思考、类比归纳等学习活动,总结归纳出

6、分式方程的概念。去分母方程两边都乘以最简公分母讨论后得出结论:方程 v2061两边同乘)20(v,得到整式方程并解得 5,当 v时,0,去分母时方程两边同乘了一个不为0的式子,所得整式方程的解与分式方程的解相同。 251x两边同乘 )5(x,得到整式方程并解得 ,当 时, =0,去分母时方程两边同乘了一个等于0的式子,所得整式方程的解使分母等于0,所以不是此分式方程的解。总结:解分式方程的基本方法:在方程的两边同乘最简公分母,就可约去分母,化成整式方程。解分式方程的解的两种情况:(1)所得的根是原方程的根、(2)所得的根不是原方程的根原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这

7、种根叫做原方程的增根。产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零因式。验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根。解分式方程的一般步骤:1在方程的两边都乘最简公分母,约去分母,化成整式方程;(一化)2解这个整式方程; (二解)3把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。(三检验)四、例题讲解,解难释疑例 1、解方程例 2、解方程教师活动:提醒学生常犯的错误:(1)去分母时,原分式方程的整式部分漏乘;(2)约去分母后,分子是多项式时,忘记添括号;(3)忘记检验,增根不舍掉。五、课堂练习

8、,学生演板练习:解下列方程(1) 321x (2) 321x(3) 042 (4)1222xx答案:(1) (2) 3 (3)无解 (4)无解六、课堂小结,温故知新1、分式方程,增根的定义;2、解分式方程的一般步骤:(1)去分母,化为整式方程:把各分母分解因式;找出各分母的最简公分母;分层设计不同难度的作业,让不同的学生在数学上得到不同发展,进一步反馈教学,内化知识.)2(13xx42方程两边各项乘以最简公分母; (2)解这个整式方程;(3)检验:把整式方程的根代入最简公分母,看结果是不是零,如果最简公分母的值不为 0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解 ,使最简公分母为零的根是原方程的增根,必须舍去。知识巩固,检验学生对本节课知识的掌握程度。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报