ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:135KB ,
资源ID:5099538      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5099538.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018届人教版数学九年级上册教案:24.1.2 垂直于弦的直径.doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2018届人教版数学九年级上册教案:24.1.2 垂直于弦的直径.doc

1、24.1.2 垂 直 于 弦 的 直 径 教 案一、 【教材分析】知识技能1.使学生理解圆的轴对称性 .2.掌握垂径定理及其推论,学会运用垂径定理及其推论解决有关的证明、计算问题.过程方法1. 经历利用圆的轴对称性对垂径定理的探索和证明过程,通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力.2. 在研究过程中,进一步体验“实验归纳猜测证明”的方法,锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活.教学目标情感态度让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现.教学重点 垂径定理、推论及它们的应用.教学难点 对垂径定理的探索和证明,并能应用垂径定理

2、进行简单计算或证明.二、 【教学流程】教学环节 问题设计 师生活动 二次备课情景创设请大家观察教材上的图片并思考问题:你知道赵州桥吗?你能给大家介绍一下有关它的历史及构造吗?创设问题情境,开展学习活动,引起学生学习的兴趣了解我国古代人民的勤劳与智慧.自主探究问题一用纸剪一个圆,将圆对折、打开,再重复做几次,你发现了什么?由此你能得到什么结论?让学生动手操作,观察、思考、交流,归纳得出圆的特性: 圆是轴对称图形,任何一条直径所在(或过培养学生动手、动脑、动口探究问题的能力问题二1、观察、思考并回答:(1)在含有一条直径 AB 的圆上再增加一条直径 CD,两条直径的位置关系怎样?(2)把直径 AB

3、 向下平移,变成非直径的弦,弦 AB 是否一定被直径 CD 平分?(3)猜想:弦 AB 在怎样情况下会被直径 CD平分?(4)思考:直径 CD 两侧相邻的两条弧是否也相等?如何证明?2、你能给上题中这条特殊的直径命名吗?这条特殊的直径有哪些性质?请用一句话概括出来.垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的两条弧.例 1 看下列图形,是否能使用垂径定理?平分弦(不是直径)的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.问题三圆心)的直线都是它的对称轴,圆的对称轴有无数条.教师提出问题,学生画图、思考,并回答提出的问题.教师参与小组活动,指导帮助学生,

4、鼓励学生大胆试验、猜想,并共同给出验证过程.小组交流,根据直径的特征,容易给出直径的名字垂直于弦的直径,师生共同归纳出特殊直径的性质,并给出教师出示图形,学生独立思考、解答,说出哪些图形能使用垂径定理?教师出示题目,学让学生积极参与探究知识的整个过程,更有利于对知识点的理解与掌握.给学生足够的发挥空间,利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解.命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”这个命题正确吗?画图说明.如果不正确,错在哪里?你认为应该怎样修改?生画图探究说明命题不正确,通过交流、修改,进一步得出垂径定理的推论.强化结论的

5、使用条件:平分非直径弦的直径.尝试应用1、如图,已知在O 中,弦 AB 的长为 8 厘米,圆心 O 到 AB 的距离为 3 厘米,求O的半径.2、已知:如图 1,若以 O 为圆心作一个O 的同心圆,交大圆的弦 AB 于 C,D 两点.求证:ACBD.变式 1:隐去(图 1)中的大圆,连接OA,OB ,设 OA=OB,求证: ACBD.变式 2:再添加一个同心圆,得(图 2)则AC BD (写出答案,不证明)教师出示题目,学生独立思考、解答学生解答完毕后,小组交流后以小组为单位展示小组的成果.教师巡视,帮助学习有困难的学生,并适时指导、点拨,不断提升、总结.学生交流,师生互动.对于第 2 题的解

6、答,要求学生一题多解:法 1:连接OA、OB、OC、OD,证OACOBD法 2:作OECD,垂足为E,利用垂径定理证明.通过问题的训练,加深学生对垂径定理的理解及应用,同时强调辅助线的作法的重要性.经过一题多解、变式训练,锻炼学生发散思维及举一反三、触类旁通解决问题的能力.3、请用所学知识解决求赵州桥拱半径的问题.要求:(1)正确画出图形,连接半径,构造直角三角形;(2)利用垂径定理的知识解决问题.补偿提高1、已知O 的半径为 13,弦 AB=24,P 是弦 AB 上任意一点,求 OP 的取值范围.2、见教材第 90 页习题 24.1 第 9 题教师出示题目,学生练习时,教师巡视、辅导,进一步

7、了解学生的掌握情况.学有余力的学生选做,达到培优的目的.小结与作业小结:通过这节课的学习,你有什么收获?作业:1、必做题教材第 83 页练习 1,2 题2、选做题教材第 90 页习题 24.1 第 10 题教师提出问题,学生独立回答,教师在学生总结后进行补充,并根据学生的回答,结合结构图总结本节知识.教师布置作业,动员分层要求.学生按要求课外完成,通过课后作业巩固本节知识.供学生课后探讨、研究.使学生能够回顾、总结、梳理所学知识.三、 【板书设计】24.1.2 垂 直 于 弦 的 直 径四、 【教后反思】本节课从介绍赵州桥的历史及构造入手,引起学生的学习兴趣和本课主题.再结合折纸、观察圆的对称性、利用对称性质验证一系列的过程,形象直观地抓住了定理,降低了单纯介绍定理的难度,同时让学生经历观察、思考、探索、交流、归纳的全过程,感受成功的喜悦.然后让学生通过对命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”的判断与修改,进一步得出垂径定理的推论,并强化结论的使用条件,为推论的正确理解和应用打好基础,锻炼了学生的思维的严密性和逻辑思维能力.最后让学生就赵州桥的半径计算问题,建立数学模型,添加辅助线构造直角三角形,利用垂径定理进行计算,真正让学生体会到学会数学的重要性.

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报