ImageVerifierCode 换一换
格式:PPTX , 页数:45 ,大小:5.67MB ,
资源ID:4901925      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-4901925.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学浙江专用二轮培优课件:专题四 第3讲 圆锥曲线中的定点、定值、最值与范围问题 .pptx)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2019高考数学浙江专用二轮培优课件:专题四 第3讲 圆锥曲线中的定点、定值、最值与范围问题 .pptx

1、第3讲 圆锥曲线中的定点、定值、最值与范围问题,高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.,真 题 感 悟,解 (1)因为抛物线y22px过点(1,2),所以2p4,即p2.,故抛物线C的方程为y24x.由题意知,直线l的斜率存在且不为0.,设直线l的方程为ykx1(k0).,(2)设A(x1,y1),B(x2,y2).,1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,

2、这类问题称为定点问题.若得到了直线方程的点斜式:yy0k(xx0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:ykxm,则直线必过定点(0,m).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.,考 点 整 合,2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐

3、标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.,(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系. (3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.,探究提高 (1)动直线l过定点问题解法:设动直线方程(斜率存在)为ykxt,由题设条件将t用k表示为tmk,得yk(xm),故动直线过定点(m,0).(2)动曲线C过定点问题

4、解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.,探究提高 (1)求定值问题常见的方法有两种:从特殊入手,求出定值,再证明这个值与变量无关. 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.,热点二 最值与范围问题 考法1 求线段长度、面积(比值)的最值 【例21】 (2018湖州调研)已知抛物线C:y24x的焦点为F,直线l:ykx4(1k2)与y轴、抛物线C分别相交于P,A,B(自下而上),记PAF,PBF的面积分别为S1,S2.

5、(1)求AB的中点M到y轴的距离d的取值范围;,探究提高 (1)处理求最值的式子常用两种方式:转化为函数图象的最值;转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).,探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.,1.解答圆

6、锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.,2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的求法,确定参数的取值范围.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报