1、15电磁感应中的能量转化与守恒学 习 目 标 知 识 脉 络1.知道电磁感应现象遵守能量守恒定律2掌握电磁感应现象中产生的电能与克服安培力做功的关系(难点)3掌握感应电流做功过程中能量的转化(重点 )电 磁 感 应 中 的 能 量 问 题先填空1电磁感应中的能量转化(1)如图 151 所示,处在匀强磁场中的水平导轨上有一根与导轨接触良好的可自由滑动的直导线 ab 在外力 F 作用下向右做匀速直线运动图 151(2)能量转化:在上述过程中,产生的电能是通过外力 F 克服安培力做功转化而来的而这些电能又通过感应电流做功,转化为其他形式的能量2电磁感应中的能量守恒能量守恒是自然界的一条普遍规律,在电
2、磁感应现象中也不例外,在电磁感应中,外力做了多少功,就有多少电能产生再判断(1)在电磁感应现象中,安培力做正功,把其他形式的能转化为电能()2(2)电磁感应现象一定伴随着能量的转化,克服安培力做功的大小与电路中产生的电能相对应()(3)安培力做负功,一定有电能产生()后思考在电磁感应现象中产生的电能与外力做的功一定相等吗?【提示】 不一定在电磁感应现象中产生的电能一定与克服安培力所做的功相等,当外力做功和克服安培力做功相等时,在电磁感应现象中产生的电能等于外力做的功,否则不相等合作探讨如图 152 所示,金属棒 ab 沿光滑导轨由静止滑下,思考以下问题:图 152探讨 1:下滑过程中,棒 ab
3、 的重力势能、动能以及回路的电能如何变化,它们间的关系式如何?【提示】 下滑过程中,棒的重力势能减少,动能增加,产生电能重力势能的减少量等于动能增加与产生的电能之和;电能全部转化为电路中的内能( 焦耳热 )探讨 2:下滑过程中功能关系如何?用动能定理如何列表达式?【提示】 重力做的功等于重力势能的减少量;棒受力做的总功等于动能改变;棒克服安培力做的功等于回路中产生的电能W GW 安 Ek.探讨 3:若斜面粗糙,棒和回路的能量又如何变化?如何把它们间的能量关系表示出来?【提示】 下滑过程中,棒的重力势能减少,动能增加,因摩擦而产生的热能和回路中产生的电能增加重力势能的减少量等于动能的增加量和因摩
4、擦而产生的热能与回路中产生3的电能之和;电能全部转化为电路中的焦耳热核心点击1电磁感应中的能量守恒(1)由磁场变化引起的电磁感应现象中,磁场能转化为电能,若电路是纯电阻电路,转化过来的电能将全部转化为电阻的内能(2)由相对运动引起的电磁感应现象中,通过克服安培力做功,把机械能或其他形式的能转化为电能克服安培力做多少功,就产生多少电能若电路是纯电阻电路,转化过来的电能也将全部转化为电阻的内能2求解电磁感应现象中能量守恒问题的一般思路(1)分析回路,分清电源和外电路在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,其余部分相当于外电路(2)分析清楚
5、有哪些力做功,明确有哪些形式的能量发生了转化如:做功情况 能量变化特点滑动摩擦力做功有内能产生重力做功 重力势能必然发生变化克服安培力做功必然有其他形式的能转化为电能,并且克服安培力做多少功,就产生多少电能安培力做正功 电能转化为其他形式的能(3)根据能量守恒列方程求解3电能的三种求解思路(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功(2)利用能量守恒求解:相应的其他能量的减少量等于产生的电能(3)利用电路特征求解:通过电路中所消耗的电能来计算41如图 153 所示,固定于水平绝缘面上的平行金属导轨不光滑,垂直于导轨平面有一匀强磁场,质量为 m 的金属棒 cd 垂直放
6、在导轨上,除 R 和 cd 棒的电阻 r 外,其余电阻不计现用水平恒力 F 作用于 cd 棒,使 cd 棒由静止开始向右滑动的过程中,下列说法正确的是( )【导学号:31310030】图 153A水平恒力 F 对 cd 棒做的功等于电路中产生的电能B只有在 cd 棒做匀速运动时,F 对 cd 棒做的功才等于电路中产生的电能C无论 cd 棒做何种运动,它克服磁场力做的功一定等于电路中产生的电能DR 两端的电压始终等于 cd 棒上感应电动势的值【解析】 F 作用于棒上使棒由静止开始做切割磁感线运动,产生感应电动势的过程中,F 做的功转化为三种能量:棒的动能 Ek、摩擦生热 Q 和回路电能 E 电
7、,即使 cd 棒匀速运动,E k0,但 Q0 ,故 A、B 错误;对 C 项可这样证明,经过时间 t, cd 棒发生的位移为 s,则 cd 棒克服磁场力做的功WBIL sBI SI EItE 电 ,永远成立,故 C 项正确;回路中,cd 棒相当于电源,有内阻,所以路端电压不等于感应电动势,所以 D 错误【答案】 C图 1542如图 154 所示,两条水平虚线之间有垂直于纸面向里、宽度为 d、磁感应强度为 B 的匀强磁场质量为 m、电阻为 R 的正方形线圈边长为 L(Ld),线圈下边缘到磁场上边界的距离为 h.将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是 v0,则在整个线圈穿过
8、磁场的全过程中(从下边缘5进入磁场到上边缘穿出磁场),下列说法正确的是( )A线圈可能一直做匀速运动B线圈可能先加速后减速C线圈的最小速度一定是mgRB2L2D线圈的最小速度一定是 2gh d L【解析】 由于 Ld,总有一段时间线圈全部处于匀强磁场中,磁通量不发生变化,不产生感应电流,不受安培力,因此不可能一直匀速运动,选项 A错误;已知线圈下边缘刚进入磁场和刚穿出磁场时刻的速度都是 v0,由于线圈全在磁场中,线圈下边缘到达磁场下边界前一定是加速运动,所以只可能是先减速后加速,而不可能是先加速后减速,选项 B 错误; 是安培力和重力平mgRB2L2衡时所对应的速度,而本题线圈减速过程中不一定
9、能达到这一速度,选项 C 错误;从开始自由下落到线圈上边缘刚进入磁场过程中应用动能定理,设该过程克服安培力做的功为 W,则有 mg(hL)W mv2,在线圈下边缘刚进入磁场12到刚穿出磁场的过程中应用动能定理,该过程克服安培力做的功也是 W,而始、末动能相同,所以有 mgdW0,由以上两式可得最小速度v ,选项 D 正确2gh d L【答案】 D图 1553如图 155 所示,两条平行光滑导轨相距 L,左端一段被弯成半径为 H的 圆弧,圆弧导轨所在区域无磁场水平导轨区域存在着竖直向上的匀强磁场14B,右端连接阻值为 R 的定值电阻,水平导轨足够长在圆弧导轨顶端放置一根质量为 m 的金属棒 ab
10、,导轨和金属棒 ab 的电阻不计,重力加速度为 g.现让6金属棒由静止开始运动,整个运动过程金属棒和导轨接触紧密求:【导学号:31310031】(1)金属棒进入水平导轨时,通过金属棒的感应电流的大小和方向(2)整个过程电阻 R 产生的焦耳热【解析】 (1)设金属棒进入水平导轨时速度为 v,根据机械能守恒定律mgH mv2,v .12 2gH金属棒切割磁感线产生的感应电动势 EBLv.根据闭合电路欧姆定律I ,ER则金属棒的感应电流大小I .BLvR BLR 2gH根据右手定则,金属棒的感应电流方向由 b 流向 a.(2)根据左手定则,金属棒在磁场中受到的安培力方向水平向左根据牛顿第二运动定律
11、Fma,金属棒向右做加速度逐渐减小的减速运动,直至静止根据能量守恒定律,电阻 R 产生的焦耳热等于金属棒减少的动能,所以电阻 R 产生的焦耳热 QmgH.【答案】 (1) 由 b 流向 a (2)mgHBLR 2gH焦耳热的计算技巧(1)感应电路中电流恒定,则电阻产生的焦耳热等于电流通过电阻做的功,即 QI 2Rt.(2)感应电路中电流变化,可用以下方法分析:利用动能定理,根据产生的焦耳热等于克服安培力做的功,即 QW 安利用能量守恒,即感应电流产生的焦耳热等于电磁感应现象中其他形式能量的减少,即 QE 其他7电 磁 感 应 中 的 力 学 问 题合作探讨如图 156 所示,水平放置的光滑平行
12、金属导轨,相距为 l,放在磁感应强度为 B 的匀强磁场中,磁场垂直导轨平面,阻值为 r 的导体棒 ac 垂直放在导轨上,根据条件思考下列问题:图 156探讨 1:棒 ac 在运动过程中所受的安培力表达式如何,方向怎样?【提示】 安培力 FBIl .由左手定则得安培力方向与速度 v 方向B2l2vR r相反探讨 2:维持棒 ac 匀速运动,所施加的水平外力情况怎样?【提示】 由平衡条件得 F 外 F 安 .B2l2vR r探讨 3:若给棒施加一个水平恒力 F,棒由静止开始运动,则棒的运动性质如何?棒的最大速度的表达式如何?【提示】 由牛顿第二定律得 FF 安 ma,即 F ma ,故棒做加B2l
13、2vR r速度减小的加速运动,最后匀速运动当 a0 时,速度最大,解得 vm.FR rB2l2核心点击1通过导体中的感应电流在磁场中将受到安培力作用,所以电磁感应问题往往与力学问题联系在一起,处理此类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向(2)求回路中的电流的大小和方向8(3)分析研究导体受力情况(包括安培力) (4)列动力学方程或平衡方程求解2电磁感应现象中涉及的具有收尾速度的力学问题,关键要抓好受力情况和运动情况的动态分析:导体受力而运动产生感应电动势 感应电流 通电导体受安培力 合外力 加速度变化 速度变化 感应电动势变化周而复始地循环,达到稳定状
14、态时,加速度等于零,导体达到稳定运动状态3两种运动状态的处理思路:(1)达到稳定运动状态后,导体匀速运动,受力平衡,应根据平衡条件合外力为零,列式分析平衡态(2)导体达到稳定运动状态之前,往往做变加速运动,处于非平衡态,应根据牛顿第二定律或结合功能关系分析非平衡态图 1574如图 157 所示,质量为 m 的金属环用线悬挂起来,金属环有一半处于与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线拉力的大小,下列说法中正确的是( )A大于环重力 mg,并逐渐减小B始终等于环的重力 mgC小于环重力 mg,并保持恒定D大于环重力 mg,并保持恒定【解析】
15、 磁感应强度均匀减小,穿过回路的磁通量均匀减小,根据法拉第电磁感应定律得知,回路中产生恒定的电动势,感应电流也恒定不变由楞次定律可知,感应电流方向为顺时针方向,再由左手定则可得,安培力的合力9方向竖直向下,金属环始终保持静止,则拉力大于重力,由于磁感应强度均匀减小,所以拉力的大小也逐渐减小,故 A 正确,B、C、D 均错误【答案】 A5如图 158 所示,足够长的平行金属导轨倾斜放置,倾角为 37,宽度为 0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为 1 .一导体棒 MN 垂直于导轨放置,质量为 0.2 kg,接入电路的电阻为 1 ,两端与导轨接触良好,与导轨间的动摩擦因数为 0.5.在
16、导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为 0.8 T将导体棒 MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒 MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度 g 取 10 m/s2, sin 370.6)( )A2.5 m/s 1 W B5 m/s 1 WC7.5 m/s 9 W D15 m/s 9W图 158【解析】 把立体图转为平面图,由平衡条件列出方程是解决此类问题的关键对导体棒进行受力分析作出截面图,如图所示,导体棒共受四个力作用,即重力、支持力、摩擦力和安培力由平衡条件得 mgsin 37F 安 F fFfF NFNmg cos 37而 F 安 BI
17、LI ER rEBLv联立式,10解得 vmgsin 37 cos 37R rB2L2代入数据得 v5 m/s.小灯泡消耗的电功率为 PI 2R由式得 P 2R1 W故选项 B 正确(BLvR r)【答案】 B6(2016漳州质检 )如图 159 甲,MN、PQ 是两条间距为 L2 m 的光滑平行金属轨道,轨道平面与水平面的夹角为 30(轨道足够长且电阻不计)M、 P 之间连接一电阻箱 R,导轨处于磁场方向垂直于轨道平面向上,磁感应强度大小为 B0.5 T 的匀强磁场中,一条质量为 m0.2 kg 的金属杆 ab 水平置于轨道上,其接入电路的电阻值为 r1.0 .现静止释放杆 ab(杆下滑过程
18、中跟轨道接触良好且始终与轨道垂直),g 取 10 m/s2.试求:(1)杆 ab 下滑过程中感应电流的方向;(2)当电阻箱的阻值 R3.0 时,杆下滑过程中的最大速度 vm;(3)通过改变电阻箱的阻值 R,杆 ab 可获得不同的最大速度 vm,请在图乙中画出 vm 与 R 的函数关系图像甲 乙图 159【解析】 (1)由右手定则可知,感应电流的方向 ba.(2)杆切割磁感线产生的感应电动势EBLv m设流过杆的电流为 I,由闭合电路欧姆定律得I ER r杆受到沿轨道向上的安培力FILB11由平衡条件,杆达到最大速度时满足mgsin ILB0代入数据由式可得:vm4 m/s.(3)由(2)中的关系式可推导 vm (Rr)mgsin B2L2代入数据可得:v mR1(m/s)vm 与 R 的函数关系图像为【答案】 (1)ba (2)4 m/s (3) 见解析该类问题的解题思路1切割磁感线运动的金属杆相当于电源2画出等效电路图3对杆进行运动和受力分析4运用电路、稳恒电流、磁场、牛顿运动定律、功和能等知识进行综合分析