ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:353KB ,
资源ID:4694118      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-4694118.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(MBA统计学第10章.ppt)为本站会员(dcjskn)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

MBA统计学第10章.ppt

1、1,Relationship among variables Functional relationship Statistical relationship(correlation) Y depends on X, but isnt merely determined by X. Example:price and salesdaily high temperaturethe demand for air-conditioning RegressionAccording to observed data, establish regression equation and make stat

2、istical reference (predict) .,Chapter 10 (P 227) Correlation and Regression Analysis,2,What does regression do?,Solve the following problems: Determine whether there is statistical relationship among variables, if does, give the regression equation. Forecast the value of another variable (dependent)

3、 according to one variable or a group of variables (independent).,3,Example: X-price,Y-sales for a kind of product We collect data:1. Scatter plot 2. Regression equation(the Least Square Estimation) 3. Correlation coefficient (Testing the regression model) 4.Forecasting (point and interval forecasti

4、ng ),Simple Linear Regression,4,Linear Regression Model,Variables consist of a linear function.,Y,X,i,i,i,0,1,Slope,Y-Intercept,Independent (Explanatory) Variable,Dependent (Response) Variable,Random Error,5,Sample Linear Regression Model,e,i,= randomerror,Y,X,Y,b,b,X,e,i,i,i,0,1,Y,b,b,X,i,i,0,1,Sam

5、pled Observed Value,6,Sample Linear Regression Model,The least squares method provides an estimated regression equation that minimizes the sum of squared deviations between the observed values of the dependent variable yi and the estimated values of the dependent variable .,7,Least Squares estimatio

6、n,e,2,Y,X,e,1,e,3,e,4,Y,b,b,X,e,i,i,i,0,1,Y,b,b,X,i,i,0,1,OLS Min,e,e,e,e,e,i,i,2,1,1,2,2,2,3,2,4,2,Predicted Value,8,Coefficient & Equation,Y,b,X,b,X,Y,n,X,Y,X,n,X,b,Y,b,X,i,i,i,i,i,n,i,i,n,0,1,1,1,2,2,1,0,1,Sample regression equation,Slope for the estimated regression equation P 238 (10.17),Interc

7、ept for the estimated regression equation,b,9,Evaluating the Model,Significance Test Test Coefficient of Determination and Standard Deviation of Estimation Residual Analysis,10,Measures of Variation in Regression,SST = SSR + SSE1. Total Sum of Squares (SST) P 239 (10.20) Measure the variation betwee

8、n the observed value Yi and the mean Y. 2. Sum of Squares due to Regression (SSR) Variation caused by the relationship between X and Y. 3. Sum of Squares due to Error (SSE) Variation caused by other factors.,11,Variation Measures,Y,X,Y,X,i,SST (Yi - Y)2,SSE (Yi -Yi)2,SSR (Yi - Y)2,Yi,Y,b,b,X,i,i,0,1

9、,12,Coefficient of Determination,0 r2 1,r,b,Y,b,X,Y,n,Y,Y,n,Y,i,i,i,i,n,i,n,i,i,n,2,0,1,2,1,1,2,1,2,Explained variation,Total variation,SSR,SST,A measure of the goodness of fit of the estimated regression equation. It can be interpreted as the proportion of the variation in the dependent variable y

10、that is explained by the estimated regression equation.,13,Correlation Coefficient,A numerical measure of linear association between two variables that takes values between 1 and +1. Values near +1 indicate a strong positive linear relationship, values near 1 indicate a strong negative linear relati

11、onship, and values near zero indicate lack of a linear relationship.,14,Coefficients of Determination (r2) and Correlation (r),15,Test of Slope Coefficient for Significance,1. Tests a Linear Relationship Between X & Y 2. Hypotheses H0: 1 = 0 (No Linear Relationship) H1: 1 0 (Linear Relationship) 3.

12、Test Statistic,16,Example Test of Slope Coefficient,H0: 1 = 0 H1: 1 0 .05 df 5 - 2 = 3 Critical value:,Statistic: Determine:Conclusion:,Reject at = 0.05,There is evidence of a relationship.,17,Multiple Regression Model,There exists linear relationship among an dependent variable and two or more than

13、 two independent variables.,Y,X,X,X,i,i,i,P,Pi,i,0,1,1,2,2,slope of population,intercept of population Y,random error,Dependent Variable,Independent Variables,18,Example: New York Times,You work in the advertisement department of New York Times(NYT). You will find to what extent do ads size(square i

14、nch ) and publishing volume (thousand) influence the response to ads(hundred).,You have collected the following data: response size volume1 1 2 4 8 8 1 3 1 3 5 7 2 6 4 4 10 6,19,Example (NYT) Computer Output,Parameter EstimatesParameter Standard T for H0: Variable DF Estimate Error Param=0 Prob|T| I

15、NTERCEP 1 0.0640 0.2599 0.246 0.8214 ADSIZE 1 0.2049 0.0588 3.656 0.0399 CIRC 1 0.2805 0.0686 4.089 0.0264,20,Interpretation of Coefficients,1.Slope (b1) If the publishing volume remains unchanged,when ads size increases one square inch, the response is expected to increase 0.2049 hundred times. 2.S

16、lope (b2) If ads size remains unchanged, when publishing volume increases one thousand, the response is expected to in- crease 0.2805 hundred times.,21,Evaluating the Model,1. How does the model describe the relationship among variables? 2. Closeness of Best Fit 3. Assumptions met 4. Significance of

17、 estimates 5. Correlation among variables 6. Outliers (unusual observations),22,Testing Overall Significance,Test whether there is linear relationship between Y and all the independent variables. 2. Use F statistic. HypothesisH0: 1 = 2 = . = P = 0 There is no linear relationship between Y and indepe

18、ndent variables. H1: At least there is a coefficient isnt equal to 0. At least there is an independent variable influences Y,23,Testing Overall Significance Computer Output,Analysis of VarianceSum of Mean Source DF Squares Square F Value ProbF Model 2 9.2497 4.6249 55.440 0.0043 Error 3 0.2503 0.083

19、4 C Total 5 9.5000,P,n - P -1,n - 1,MSR / MSE,p Value,24,Transformations in Regression Models,Non-linear models that can be transformed into linear models (convenient to carry out OLS). Data Transformation Multiplicative Model Example,25,Square-Root Transformation,26,Logarithmic Transformation,27,Exponential Transformation,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报