ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:63KB ,
资源ID:460079      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-460079.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.3算法案例---第一、二课时 辗转相除法与更相减损术.doc)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

1.3算法案例---第一、二课时 辗转相除法与更相减损术.doc

1、1.3 算法案例第一、二课时 辗转相除法与更相减损术(1)教学目标(a)知识与技能1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。(b)过程与方法在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。(c)情态与价值1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。2.在学习古代数学家解决数学问题的方法的过

2、程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。(2)教学重难点重点:理解辗转相除法与更相减损术求最大公约数的方法。难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。(3)学法与教学用具学法:在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出 18 与30 的公约数吗?2.接着教师进一步提出问题,我们

3、都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求 8251 与 6105 的最大公约数?这就是我们这一堂课所要探讨的内容。(二)研探新知1.辗转相除法例 1 求两个正数 8251 和 6105 的最大公约数。(分析:8251 与 6105 两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251610512146显然 8251 的最大公约数也必是 2146 的约数,同样 6105 与 2146 的公约数也必是 8251的约数,所以 8251 与 6105 的最大

4、公约数也是 6105 与 2146 的最大公约数。6105214621813214618131333181333351483331482371483740则 37 为 8251 与 6105 的最大公约数。以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前 300 年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数 m 除以较小的数 n 得到一个商 q0和一个余数 r0;第二步:若 r00,则 n 为 m,n 的最大公约数;若 r00,则用除数 n 除以余数 r0得到一个商 q1和一个余数 r1;第三步:若 r10,则 r1为 m,n 的

5、最大公约数;若 r10,则用除数 r0除以余数 r1得到一个商 q2和一个余数 r2;依次计算直至 rn0,此时所得到的 rn1 即为所求的最大公约数。练习:利用辗转相除法求两数 4081 与 20723 的最大公约数(答案:53)2.更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。翻译出来为:第一步:任意给出两个正数;判断它们是否都是偶数。若是,用 2 约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这

6、个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。例 2 用更相减损术求 98 与 63 的最大公约数.解:由于 63 不是偶数,把 98 和 63 以大数减小数,并辗转相减,即:9863356335283528728721217141477所以,98 与 63 的最大公约数是 7。练习:用更相减损术求两个正数 84 与 72 的最大公约数。 (答案:12)3.比较辗转相除法与更相减损术的区别(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。(2)从结果体现形

7、式来看,辗转相除法体现结果是以相除余数为 0 则得到,而更相减损术则以减数与差相等而得到4. 辗转相除法与更相减损术计算的程序框图及程序利用辗转相除法与更相减损术的计算算法,我们可以设计出程序框图以及 BSAIC 程序来在计算机上实现辗转相除法与更相减损术求最大公约数,下面由同学们设计相应框图并相互之间检查框图与程序的正确性,并在计算机上验证自己的结果。(1)辗转相除法的程序框图及程序程序框图:输入两个正整数 m , nm n ?r = m M O D nr = 0 ?m = nn = r结束开始x = nn = mm = x输出 n否是否是程序:INPUT “m=”;mINPUT “n=”;

8、nIF m0 r=m MOD nm=nn=rWENDPRINT mEND5.课堂练习一.用辗转相除法求下列各组数的最大公约数,并在自己编写的 BASIC 程序中验证。(1)225;135 (2)98;196 (3)72;168 (4)153;119二.思考:用求质因数的方法可否求上述 4 组数的最大公约数?可否利用求质因数的算法设计出程序框图及程序?若能,在电脑上测试自己的程序;若不能说明无法实现的理由。三。思考:利用辗转相除法是否可以求两数的最大公倍数?试设计程序框图并转换成程序在 BASIC 中实现。6.小结:辗转相除法与更相减损术求最大公约数的计算方法及完整算法程序的编写。(5)评价设计作业:P38 A(1)B(2)补充:设计更相减损术求最大公约数的程序框图

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报