ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:147.50KB ,
资源ID:454903      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-454903.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学:第二章《抛物线》素材(新人教a版选修1-1).doc)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学:第二章《抛物线》素材(新人教a版选修1-1).doc

1、从离心率看圆锥曲线间的关系早在 17 世纪初,在当时关于一个数学对象能从一个形状连续地变到另一个形状的新思想的影响下,法国天文学家开普勒对圆锥曲线的性质作了新的阐述他发现了圆锥曲线的焦点和离心率,并指明抛物线还有一个在无穷远处的焦点,直线是圆心在无穷远处的圆从而他第一个掌握了这样的事实:椭圆、抛物线、双曲线、圆,都可以从其中的一个连续地变为另一个,从而辩证地看到了各类圆锥曲线间的关系下面我们从离心率对圆锥曲线的形状的影响入手,来研究圆锥曲线间的关系,为了讨论这个问题,我们首先在同一直角坐标系中把椭圆、抛物线、双曲线这三种曲线的方程统一起来1椭圆、抛物线、双曲线的统一方程将椭圆 按向量 平移得到

2、,即 作椭圆的半通径(即过椭圆焦点且垂直于长轴的半弦) ,用 表示,易证 ,同时易知 故椭圆的方程可写成类似地,将双曲线 按向量 平移得到,即 作双曲线的半通径(即过双曲线焦点且垂直于实轴的半弦) ,用 表示 ,易证 ,同时易知 故双曲线方程可写成对于抛物线 , 为半通径长,离心率 ,它也可写成,于是在同一坐标系下,三种曲线有统一方程,其中 是曲线的半通径长,当 , , 时分别表示椭圆、抛物线、双曲线2从离心率看圆锥曲线间的关系设椭圆、双曲线、抛物线有相同的半通径,即统一方程中的 不变,令离心率 变化,在这种情况下,我们讨论曲线变化趋势在同一坐标系下,作出这三种曲线如图所示,设 , , 分别是

3、抛物线焦点、椭圆的左焦点和双曲线的右焦点,则有,所以 这说明 点在 点右侧,而 点在 点左侧由此,我们来看三种曲线的位置关系(由曲线的对称性,只考虑第一象限内的情况),从统一方程不难看出,当任意取定 时,设椭圆、抛物线和双曲线上对应点的纵坐标分别为 , , ,有这说明,双曲线在抛物线上侧,而椭圆在抛物线下侧下面我们进一步讨论圆锥曲线间的关系(1)当离心率 由小于 1 无限趋近于 1 时,(符号“”表示无限趋近于)即 这说明椭圆的左焦点无限趋近于抛物线的焦点,且椭圆在第一象限内向上移动无限接近抛物线又因为 ,所以 由于 由小于 1 无限趋近于 1,所以 这说明椭圆右焦点沿 轴正向趋于无限远因此可以看出,在椭圆的情况下,当 时,椭圆的极限情况就是抛物线(2)当离心率 由大于 1 无限趋近于 1 时,即 这说明双曲线右焦点无限接近于抛物线的焦点,且双曲线右支在第一象限内向下移动无限接近抛物线又因为 ,所以 由于 由大于 1 无限趋近于 1,所以 这说明双曲线左焦点沿 轴负方向趋于无限远因此可以看出,在双曲线的情况下,当 时,双曲线的极限情况就是抛物线(3)在椭圆情况下,当 时有, , 故当 时,椭圆的极限情况是以点 为圆心、以 为半径的圆这个事实也可以从统一方程中,令 ,得到的就是这个圆的方程:

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报