1、一、生活中的立体图形展开与折叠班级:_姓名:_作业导航1.能从现实生活中发现认识一些基本的立体图形.2.了解最基本的展开与折叠.一、填空题1.矩形绕其一边旋转一周形成的几何体叫_,直角三角形绕其中一个直角边旋转一周形成的几何体叫_.2.将一个无底无盖的长方体沿一条棱剪开得到的平面图形为_.3.将一个无底无盖的圆柱剪开得到一个矩形,其中圆柱的_等于矩形的一个边长,矩形的另一边长等于_.4.长方体共有_个顶点_个面,其中有_对平面相互平行.5.球面上任一点到球心的距离_.6.如图 1,由 6 个边长相等的正方形组成的长方形 ABCD 中,包含*在内的正方形与长方形共_个.7.如果长方体从一点出发的
2、三条棱长分别为 2、3、4,则该长方体的面积为_,体积为_.8.用一个宽 2 cm,长 3 cm 的矩形卷成一个圆柱,则此圆柱的侧面积为_.9.现实生活中的油桶、水杯等都给人以_的形象.二、解答题10.如图 2,ABCD 为边长为 4 的正方形,M、N 分别是 DA、BC 上的点,MNAB,MN交 AC 于 O,且 MD=1,沿 MN 折起,使AMD=90制作模型,并画出折起后的图形 .图 2 图 311.如图 3,是边长为 1 m 的正方体,有一蜘蛛潜伏在 A 处,B 处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,猜测蜘蛛爬行的最短路线.12.如图 4,在长方形 ABB1A1 中,
3、AB=6 cm,BB 1=3 cm, CC1、DD 1 是 A1B、AB 三等分线图 1段,A 1B 交 C1C、D 1D 于 M、 N,把此图以 C1C、D 1D 为折痕且 A1A 与 B1B 重合折成一个三棱柱侧面,制作出相应的模型,并观察折成棱柱前后 A1B 的变化.图 413.如图 5,为一扇形,将此扇形卷起使 AB 与 AC 重合,制作相应模型,并观察卷起以后,形成一个什么样的几何体及 BC 的变化,你能画出卷起后的几何体吗?试试看.图 5 图 614.如图 6,折叠长方形的一边 AD,点 D 落在 BC 边的点 F 处,当 AB=8 cm,BC =10 cm时量出 FC 的长.参考答案一、生活中的立体图形展开与折叠一、1.圆柱 圆锥 2.矩形 3.高 圆柱的底面周长 4. 8 6 3 5.相等 6. 77. 52 24 8. 6 9.圆柱二、略