ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:627.59KB ,
资源ID:4515475      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-4515475.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数列第三讲.docx)为本站会员(eco)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数列第三讲.docx

1、专题七数列考向 1 由递推公式求通项公式1递推公式如果已知数列a n的首项 (或前几项) ,且任何一项 an与它的前一项 an1 (或前几项) 间的关系可以用一个式子来表示,即 anf (an1 )或 anf(a n1 ,a n2 ),那么这个式子叫作数列a n的递推公式2已知递推关系式求通项一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式典型例题:1、如图,互不相同的点 A1,A 2,A n,和 B1,B 2,B n,分别在角 O 的两条边上,所有 AnBn相互平行,且所有梯形 AnBnBn1 An1 的面积均相等,

2、设 OAna n,若 a11,a 22,则数列a n的通项公式是_2、已知数列a n满足 a1 1,a 24,a n2 2a n 3an1 (nN *),则数列 an的通项公式 an_3、已知数列a n满足 a1 1,a n1 3a n2,则数列 an的通项公式为_方法总结:(重点)已知数列的递推公式求通项公式的常见类型及解法(1):形如 an 1a nf(n),常用累加法即利用恒等式 ana 1(a 2a 1)(a 3 a2) (a na n 1)求通项公式(2):形如 an 1a nf(n),常用累乘法,即利用恒等式ana 1 求通项公式a2a1 a3a2 anan 1(3):形如 an

3、1ba nd(其中 b,d 为常数,b0,1)的数列,常用构造法其基本思路是:构造 an1 xb(a nx )(其中 x ),则 anx 是公比为db 1b 的等比数列,利用它即可求出 an.(4):形如 an 1 (p,q,r 是常数)的数列,将其变形为panqan r .1an 1 rp 1an qp若 pr,则 是等差数列,且公差为 ,可用公式求通项;1an qp若 pr,则采用(3) 的办法来求(5):形如 an 2pa n1 qa n(p,q 是常数,且 pq1)的数列,构造等比数列将其变形为 an2 a n1 (q)( an1 a n),则 ana n1 (n2,nN *)是等比数

4、列,且公比为q,可以求得 ana n1 f(n),然后用累加法求得通项(6):形如 a1 2a23a 3na nf(n) 的式子,由 a12a 23a 3na nf(n),得 a12a 23a 3(n1)a n1 f(n1) ,再由可得 an.变式训练:1、在数列 an中,a 12, an1 a nln ,则 an等于( )(1 1n)A2lnn B2(n1)lnnC2 nlnn D1nlnn2、设 an是首项为 1 的正项数列,且 (n1)a na a n1 an0(n1,2,3,),则它的通项公式 an_2n 1 2n考向 2 由 Sn和 an的关系求通项1a n与 Sn的关系若数列 an

5、的前 n 项和为 Sn,则an S1(n 1),Sn Sn 1(n 2).)2已知 Sn求 an时应注意的问题(1)应重视分类讨论思想的应用,分 n1 和 n2 两种情况讨论,特别注意anS nS n1 中需 n2.(2)由 SnS n 1a n推得 an,当 n1 时,a 1 也适合“a n式” ,则需统一“合写” (3)由 SnS n 1a n推得 an,当 n1 时,a 1 不适合“a n式” ,则数列的通项公式应分段表示( “分写”),即an S1(n 1),Sn Sn 1(n 2).)典型例题:1、若数列 an的前 n 项和 Sn an ,则a n的通项公式是23 13an_2、已知

6、数列a n中,a 1 1,前 n 项和 Sn an.n 23求 a2,a 3;求a n的通项公式方法总结:(1)先利用 a1 S1 求出 a1;(2)用 n1 替换 Sn中的 n 得到一个新的关系,利用 anS nS n1 (n2)便可求出当 n2 时 an的表达式;(3)对 n1 时的结果进行检验,看是否符合 n2 时 an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分 n1 与 n2 两段来写。变式训练:1、设数列 an的前 n 项和为 Sn,数列S n的前 n 项和为 Tn,满足Tn2S nn 2, nN *.(1)求 a1 的值;(2)求数列a n的通项公式考向 3 数列的单调性及其应用1数列与函数的关系从函数观点看,数列可以看成是以正整数集 N*或 N*的有限子集1,2, 3, ,n 为定义域的函数 anf(n) ,当自变量按照从小到大的顺序依次取值时所对应的一列函数值2数列的单调性(1)递增数列a n1 an;(2)递减数列a n1 0数列a n是单调递增数列;a n1 a n0 时,则 1数列 an是单调递增数列;1n1数列 an是单调递减数列; loga(1a)对任意正整数1anan 2 13n 恒成立,求实数 a 的取值范围

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报