ImageVerifierCode 换一换
格式:PPT , 页数:34 ,大小:1.47MB ,
资源ID:4387415      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-4387415.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(空间向量法解决立体几何证明.ppt)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

空间向量法解决立体几何证明.ppt

1、利用空间向量解决立体几何问题,数学专题二,复习:,2. 向量的夹角:,A,B,向量 的夹角记作:,1.空间向量的数量积:,4.向量的模长:,3.有关性质:,两非零向量,5.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要 条件是存在实数对 使,推论:,一.引入两个重要的空间向量,1.直线的方向向量 把与直线平行的向量都称为直线的方向向量.如图,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是,2.平面的法向量,与平面垂直的向量叫做平面的法向量.,n,例1. 如图所示, 正方体的棱长为1 直线OA的一个方向向量坐标为_ 平面OABC 的

2、一个法向量坐标为_ 平面AB1C 的一个法向量坐标为_,(-1,-1,1),(0,0,1),(1,0,0),练习:在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.,A,B,C,D,O,A1,B1,C1,D1,z,x,y,解:以A为原点建立空间直角坐标系O-xyz, 设平面OA1D1的法向量的法向量为n=(x,y,z), 那么O(1,1,0),A1(0,0,2),D1(0,2,2),取z =1,解得:,得:,由 =(-1,-1,2), =(-1,1,2),练习 如图,在四棱锥P-ABCD中,底面ABCD是 正方形,侧棱PD底面ABCD,PD=DC=1 ,

3、E是PC 的中点, 求平面EDB的一个法向量.,A,B,C,D,P,E,解:如图所示建立空间直角坐标系.,设平面EDB的法向量为,二、 立体几何中的向量方法 平行关系,m,l,一. 平行关系:,二、垂直关系:,l,m,l,A,B,C,例1 四棱锥P-ABCD中,底面ABCD是正方 形, PD底面ABCD,PD=DC=6, E是PB的 中点,DF:FB=CG:GP=1:2 . 求证:AE/FG.,A,B,C,D,P,G,F,E,A(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2),AE/FG,证 :如图所示, 建立 空间直角坐标系.,/,AE与FG不共线,几何法呢?,例2 四棱

4、锥P-ABCD中,底面ABCD是正 方形,PD底面ABCD,PD=DC, E是PC的 中点, 求证:PA/平面EDB.,A,B,C,D,P,E,解1 立体几何法,A,B,C,D,P,E,解2:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1,证明:,设平面EDB的法向量为,几何法呢?,几何法呢?,练习 棱长为a 的正方体 中,E、F分别是棱AB,OA上的动点,且AF=BE,求证:,Z,x,y,解:如图所示建立空间 直角坐标系,设AF=BE=b.,A,B,C,D,P,E,F,证1:如图所示建立 空间直角坐标系,设DC=1.,A,B,C,D,P,E,F,证2:,E是AA1中点,,例3 正方体

5、,平面C1BD.,证明:,E,求证:平面EBD,设正方体棱长为2, 建立如图所示坐标系,平面C1BD的一个法向量是,E(0,0,1),D(0,2,0),B(2,0,0),设平面EBD的一个法向量是,平面C1BD.,平面EBD,证明2:,E,E是AA1中点,,例3 正方体,平面C1BD.,求证:平面EBD,A,B,C,D,P,G,例4棱长都等于2的正三棱柱ABC-A1B1C1, D,E分别是AC,CC1的中点,求证: (1)A1E 平面DBC1; (2)AB1 平面DBC1,A1,C1,B1,A,C,B,E,D,z,x,y,解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则 A(-1,0,0), B(0, ,0), E(1,0,1), A1(-1,0,2), B1(0, ,2), C1(1,0,2). 设平面DBC1的法向量为n=(x,y,z),则解之得 , 取z = 1得n=(-2,0,1) (1) =- n,从而A1E 平面DBC1 (2) ,而 n =-2+0+2=0 AB1 平面DBC1,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报