1、24.2与圆有关的位置关系,点和圆的位置关系,教学目标,1理解并掌握设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外 dr;点P在圆上 d=r;点P在圆内 dr及其运用 2理解不在同一直线上的三个点确定一个圆并掌握它的运用 3了解三角形的外接圆和三角形外心的概念 4了解反证法的证明思想,重点难点,重点: 点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用。难点: 讲授反证法的证明思路。,爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中
2、谁的成绩好?,A,B,C,如图,设O 的半径为r,A点在圆内, B点在圆上,C点在圆外,那么,点A在O内,点B在O上,点C在O外,OAr, OBr, OCr,反过来也成立,如果已知点到圆心的距离和圆的半径的关系,就可以判断点和圆的位置关系。,OAr,OB=r,OCr,设O 的半径为r,点P到圆心的距离OP=d,则有:,点P在O内,点P在O上,点P在O外,dr,d=r,dr,d,圆外的点,圆内的点,圆上的点,平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。,圆的内部可以看成是到圆心的距离小于半径的的点的集合;圆的外部可以看成 是 。,到圆心的距离大于半径的点的集合,思考:平面
3、上的一个圆把平面上的点分成哪几部分?,例:如图已知矩形ABCD的边AB=3厘米,AD=4厘米,(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆上,D在圆外,C在圆外),(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆内,D在圆上,C在圆外),(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆内,D在圆内,C在圆上),练一练,1、O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与O的位置关系是:点A在 ;点B在 ;点C在 。,2、O的半径6c
4、m,当OP=6时,点A在 ; 当OP 时点P在圆内;当OP 时,点P不在圆外。,3、正方形ABCD的边长为2cm,以A为圆心2cm为半径作A,则点B在A ;点C在A ;点D在A 。,圆内,圆上,圆外,圆上,6,6,上,外,上,4、已知AB为O的直径P为O 上任意一点,则点关于AB的对称点P与O的位置为( )(A)在O内 (B)在O 外 (C)在O 上 (D)不能确定,c,P,P,1、平面上有一点A,经过已知A点的圆有几个?圆心在哪里?,A,无数个,圆心为点A以外任意一点,半径为这点与点A的距离,2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点?,以线段AB的垂直平分
5、线上的任意一点为圆心,以这点到A或B的距离为半径作圆.,无数个。它们的圆心都在线段AB的垂直平分线上。,3、平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?,归纳结论:不在同一条直线上的三个点确定一个圆。,B,C,经过B,C两点的圆的圆心在线段AB的垂直平分线上.,A,经过A,B,C三点的圆的圆心应该这两条垂直平分线的交点O的位置.,O,经过A,B两点的圆的圆心在线段AB的垂直平分线上.,经过三角形三个顶点可以画一个圆,并且只能画一个,一个三角形的外接圆有几个? 一个圆的内接三角形有几个?,经过三角形三个顶点的圆叫做三角形的外接圆。,三角形的外心就是三角形三条边的垂直平分线的
6、交点,它到三角形三个顶点的距离相等。,这个三角形叫做这个圆的内接三角形。,三角形外接圆的圆心叫做这个三角形的外心。,想一想,O,分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.,锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.,1、判断下列说法是否正确 (1)任意的一个三角形一定有一个外接圆( ). (2)任意一个圆有且只有一个内接三角形( ) (3)经过三点一定可以确定一个圆( ) (4)三角形的外心到三角形各顶点的距离相等( ),2、若一个三角形的外心在一边上,则此三角形的 形
7、状为( )A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形,B,这节课你学到了哪些知识?有什么感想?,爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的的安全区域,已知这个导火索的长度为18cm,如果点导火索的人以每秒6.5m的速度撤离,那么是否安全?为什么?,教学反思,本节课的中心问题就是点与圆的位置关系,日常生活中圆是较常见的图形,但有关圆具体的性质还需进一步研究,本节是在理解圆的定义的基础上展开的,通过代数关系表述几何问题,使学生深化理解代数与几何之间的联系,为后面接触直线与圆的位置关系做下铺垫。 面对暂差生的问题,始终是教育教学的工作重点,在这两个班中,程度和基础都不一样,面对不同的班级应该采用不同的教学手段,来提高学生成绩。教学措施:在今后的教学中,要多反思,面对暂差生,应该多一份宽容,多一份耐心,换一种心态看他们、去帮助他们,提高他们的学习兴趣。,