1、 人教版七年级数学下册 第九章 不等式与不等式组 全章测试题一、选择题1下列变形错误的是( )A若 acbc,则 abB若 a b,则 ab12 12C若 ac bc ,则 abD若 a b,则 ab12 122不等式 1 的解集是( )x2 x 13Ax4 Bx4Cx1 Dx13将不等式组 的解集表示在数轴上 ,正确的是( )12x 17 32x,5x 2 3(x 1))4若关于 x 的方程 3(xk)x6 的解是非负数,则 k 的取值范围是( )Ak2 Bk2Ck2 Dk25若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )x 1 0,x a 0)Aa1 Ba1Ca1 Da1
2、6若不等式组 的解集为 2x3,则 a,b 的值分别为( )x b 0,x a 0)A2,3 B2,3C3, 2 D3,27三个连续正整数的和小于 39,这样的正整数中,最大一组的和是( )A39 B36 C35 D348某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费 10000 元,再对每户收费 500 元某小区住户按这种收费方法全部安装天然气后,每户平均支付不足 1000 元,则这个小区的住户数( )A至少 20 户 B至多 20 户C至少 21 户 D至多 21 户9某种出租车的收费标准是:起步价 7 元(即行驶距离不
3、超过 3 千米都收 7 元车费),超过3 千米以后,超过部分每增加 1 千米,加收 2.4 元(不足 1 千米按 1 千米计)某人乘这种出租车从甲地到乙地共支付 19 元,设此人从甲地到乙地经过的路程是 x 千米,那么 x 的取值范围是( )A1x11 B7x8C8 x9 D7x8二、填空题10已知 x2 是非负数,用不等式表示_;已知 x 的 5 倍与 3 的差大于 10,且不大于 20,用不等式组表示_211若|x1|1x 成立,则 x 的取值范围是_ 12若关于 x,y 的二元一次方程组 中 x 的值为正数,y 的值为负数,则3x 2y m 2,2x y m 5)m 的取值范围为_.2-
4、113在平面直角坐标系中,已知点 A(72m,5m)在第二象限内,且 m 为整数,则点 A的坐标为_14一种药品的说明书上写着:“每日用量 60120 mg,分 4 次服用” ,则一次服用这种药品的用量 x(mg)的范围是 _15按下列程序(如图) ,进行运算规定:程序运行到“判断结果是否大于 244”为一次运算若 x5,则运算进行_次才停止;若运算进行了 5 次才停止,则 x 的取值范围是_16为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警” 活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序若每一个路口安排 4 人,那么还剩下 78 人;若每一个路口安
5、排 8 人,那么最后一个路口不足 8 人,但不少于 4人则这个中学共选派值勤学生_人,共有_个交通路口安排值勤三、解答题17解下列不等式(组) ,并把解集在数轴上表示出来:(1) x 1; 5x 13(2) 1 ;x2 7 x3(3) 4x 6 1 x,3(x 1)x 5;)(4)2x 53(x 2),1 2x3 15 0. )18解不等式组 并求出它的整数解的和2x 3 3x,x 33 x 16 12,)19阅读理解:解不等式(x1)(x3) 0.解:根据两数相乘,同号得正,原不等式可以转化为 或x 1 0,x 3 0) x 1 0,x 3 0.)解不等式组 得 x3;x 1 0,x 3 0
6、)解不等式组 得 x1.x 1 0,x 3 0)所以原不等式的解集为 x3 或 x1.问题解决:根据以上材料,解不等式(x2)(x3) 0.20.某商场进了一批价值 8 万元的衣服,每件零售价为 180 元时,卖出了 250 件,但发现销售量不大,营业部决定每件降价 40 元,那么商场至少要再卖出多少件后才能收回成本?21某小区前面有一块空地,现想建成一块面积大于 48 平方米,周长小于 34 米的长方形绿化草地,已知一边长为 8 米,设其邻边长为 x 米,求 x 的整数值22. 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒” 知识竞赛,为奖励在竞赛中表现优异的班级,学校准
7、备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买 1 个足球和 1 个篮球共需 159 元;足球单价是篮球单价的 2 倍少 9 元(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共 20 个,但要求购买足球和篮球的总费用不超过 1550 元,则学校最多可以购买多少个足球?23某地区为筹备一项庆典,利用现有的 3490 盆甲种花卉和 2950 盆乙种花卉搭配 A,B 两种园艺造型共 50 个摆放在迎宾大道两侧,已知搭配一个 A 种造型需甲种花卉 80 盆,乙种花卉 40 盆;搭配一个 B 种造型需甲种花卉 50 盆,乙种
8、花卉 90 盆,且搭配一个 A 种造型的成本是 200 元,搭配一个 B 种造型的成本是 300 元,则有多少种搭配方案?这些方案中成本最低的是多少元?答案:1-9 CAACA ABCB10. x20 5x 3 105x 320)11. x1 12. m198313. (1,1) 14. 15x30 15. 4 2x 4 16. 158 2017. (1) 解: x2,数轴略(2) 解:x4 ,数轴略(3) 解:1x 4,数轴略(4) 解:1 x ,数轴略4518. 解:不等式组的解集为4x3这个不等式组的整数解为4,3,2,1,0,1,2其和为4321012719. 解:由题意得 或x 2
9、0,x 3 0) x 2 0,x 3 0, )解不等式组 不等式组无解;x 2 0,x 3 0, )解不等式组 解得3x2,则原不等式的解集是 3x2x 2 0,x 3 0, )20. 解:设商场至少要再卖出 x 件后才能收回成本由题意得 180250(18040)x80000解得 x250即商场至少要再卖出 250 件后才能收回成本21. 解:根据题意得 8x 48,2(x 8) 34, )解得 6x9又x 为整数x 的值为 7 或 822. 解: (1)设足球的单价是 x 元,篮球的单价是 y 元,根据题意得 解得x y 159,x 2y 9, )则足球的单价是 103 元,篮球的单价是
10、56 元 x 103,y 56, )(2)设最多可以购买足球 m 个,则购买篮球(20m)个,根据题意得 103m56(20m)1550,解得 m9 ,m 为整数,m 最大取 9,则学校最多可以购买 9 个足球74723. 解:设搭配 A 种造型 x 个,则 B 种造型为(50x)个,依题意得解得 31x33, x 是整数,x 可取 31,32,33,80x 50(50 x) 3490,40x 90(50 x) 2950, )可设计三种搭配方案:A 种的造型 31 个,B 种造型 19 个;A 种造型 32 个,B 种造型 18 个;A 种造型 33 个,B 种造型 17 个由于 B 种造型的成本高于 A 种造型成本,所以 B 种造型越少,成本越低,故应选择方案,成本最低,最低成本为332001730011700(元)