ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:523.22KB ,
资源ID:4003695      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-4003695.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(七年级数学代数式(学生讲义).doc)为本站会员(gsy285395)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

七年级数学代数式(学生讲义).doc

1、 1第二章 代数式2.1 字母表示数和列代数式【本讲主要内容】一. 教学内容:用字母表示数、列代数式二. 重点、难点:1. 重点:用字母表示数,代数式的意义,列代数式。2. 难点:熟练地用字母表示数,列代数式。三. 教学知识要点:1. 用字母表示数,不要使字母表示的数的范围缩小,一个字母可表示任何有理数。2. 在同一个问题中,不同的量必须用不同的字母表示。3. 字母与字母相乘, “乘号”可省略,数字与字母相乘,要把数字写在字母前面(如a3 必须写成 3a,不能写成 a3) ;带分数与字母相乘,一定要把带分数化成假分数。5. 代数式的意义用运算符号加、减、乘、除、乘方、开方,把数字与字母联结而成

2、的式子叫代数式。说明:(1)单独的一个数或字母,虽没涉及运算,但可以看作是该数或字母乘以(或除以)1,规定它们也是代数式(如 15,l,t,0) 。(2)正确列出代数式的关键为:抓住关键词语的意义,理清它们之间的数量关系,弄清运算顺序和括号的使用方法。(3)代数式中不含“”号或“、”号等表示相等关系或不等关系的符号。四. 考点分析用字母表示数用字母表示数可以简明地表达现实中浩繁的数量间的关系,表达数的各种运算定律、性质和法则。如用字母 a、b、c 表示三个数,则加法结合律可表示为:a+b+c=a+(b+c)=( a+b)+c. 在用字母表示数时,应注意:(1)同一个问题中的相同量要用同一个字母

3、表示,不同量必须用不同字母表示.同一个字母在不同问题中的意义也是不同的.如在表示长方形的面积公式时,用 S 表示面积,a 表示长方形的长,b 表示长方形的宽,则有 S=ab。在这里,S、a、b 分别表示不同的量,同样是字母 a,在不同的问题中可表示不同的数。 (2)应该遵循规定了的、约定俗成的、沿袭的表示习惯.如:用 C 表示周长,用表示厘米代数式1. 代数式的定义像 n-2,3b, ,m+3 等由运算符号连接的式子都是代数式.单独一个数或一个字母也yx2是代数式.2. 写代数式(1)数与数相乘用“” ;数与字母,字母与字母相乘用“”或省略不写;(2)字母与数字相乘,数字因式应放在字母因式之前

4、,带分数与字母相乘,带分数要化为假分数.如 a 不能写成 a.(3 )代数式中的除号一般用分数线表示 .如 2ab 应写成 .341 a2(4)几个字母因数排列时,一般按字母顺序排列.如 5a2c3b 通常写成 5a2bc3.(5)代数式若是和或差的形式,且结果中又有单位的,应用括号将代数式括起来,后面再带单位.如(2a+3)不能写成 2a+3.3. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.【典型例题】例 1. 用代数式表示:(1)x

5、的平方与 y 的一半的和(2)x 与 y 的平方的和的 2 倍(3)a 与 b 的倒数的差的平方(4)两个数的和为 100,其中一个数为 a,求两数积(5)m 与 n 的和减去 2 的相反数(6)二个连续偶数的积例 2. 有若干张边长都是 2 的三角形纸片,从中取出一些纸片按如图所示的顺序拼接起来,可以组成一个大的平行四边形与一个大的梯形,如果取的纸片数为 n,试用含 n 的代数式表示组成的平行四边形或梯形的周长。3例 3. 计算:例 4 当 x=1 时,代数式 13qxp的值为 2005,求 x=1 时,代数式 13qxp 的值.例 5 下图是一个数值转换机的示意图,请你用 x、y 表示输出

6、结果,并求输入 x 的值为3,y 的值为-2 时的输出结果 .例 6 求代数式 的值,其中222 yxyx3x0|1y|2输入 x 输入 y2 ( )3+2输出结果4例 7. 如图,是由边长为 1 的正方形按照某种规律排列而成的。(1)观察图形,填写下表:图形 正方形个数 8图形的周长 18(2)推测第 n 个图形中,正方形的个数为_,周长为_(用含n 的代数式表示)【模拟试题】 (答题时间:30 分钟)一. 填空题。1. 下列各式: ,其中代数式的个数有_个。2. a 的绝对值与 3 的倒数的和的平方可表示为_。3. 甲、乙两地相距 1000 米,有小王每分钟走 x 米,小李每分钟走 y 米

7、,他们两人同时分别从甲、乙两地相向而行,_分钟后相遇。4. 小红每小时走 公里,y 小时后走了_公里。5. 把 a 千克盐放进 b 千克水中,配制成的盐水浓度为_。5二. 用代数式表示。(1)x 与 y 的积的平方;(2)a 与 b 的相反数的和的 6 倍;(3)两个数的积为 8,其中一个数 m,求两数和;(4)一个两位数的个位上数字为 a,十位上数字比它多 2,求这个两位数;(5)两个连续整数的积;(6)被 x 除余 4 商为 8 的数。三. 应用题。1. 用 1 立方米水的费用为 0.98 元,1 千瓦时的电费为 0.5 元,用 x 立方米的水、y 千瓦时的电,水电费共多少元?2. 一个三

8、位数,个位数字为 a,十位数字为 b,百位数字为个位数字、十位数字的和,求这个三位数。四. 用字母表示加法法则,如何表示?2.2 求代数式的值【本讲主要内容】一. 教学内容: 求代数式的值 用 字 母 表 示 数 代 数 式 求 代 数 式 值 一 类 代 数 式 加 减 二. 知识要点1. 知识点概要(1)了解代数式的概念.(2)能用代数式表示简单问题的数量关系6(3)能解释一些简单代数式的实际背景或几何意义.(4)通过具体例子感受“同一个代数式可以表示不同的实际意义” , “理解符号所代表的数量关系”.(5)了解代数式的值的意义,会计算代数式的值.(6)能读懂计算程序图,会按照规定的程序计

9、算代数式的值,会按照要求设计简单的计算程序,初步感受“算法”的思想及数量的变化与联系.2. 重点难点(1)根据简单问题的数量关系正确列出代数式.(2)读懂计算程序图,计算代数式的值.【典型例题】例 1. 把多项式 重新排列:32346961abbaa(1)按 的降幂排列;( 2)按 的降幂排列.例 2. 当 x=-0.5,y=2 时,求代数式 x(x-y) 2 的值.21例 3. 下图是一组数值转换机,写出图 a 的输出结果,找出图 b 的转换步骤,并完成下表.例 4. (2008 年梅州)如下图所示,在长和宽分别是 、 的矩形纸片的四个角都剪去ab一个边长为 的正方形 .x输 入 -3 21

10、0 0.25 34图 a 的输出图 b 的输出7用 , , 表示纸片剩余部分的面积;abx当 =6, =4, =2 时,求剩余部分的面积 .例 5. 电话费与通话时间的关系如下表:通话时间a(分)电话费b(元)1 0.2+0.82 0.4+0.83 0.6+0.84 0.8+0.8 (1)试用含 a 的代数式表示 b;(2)计算当 a=100 时,b 的值.例 6. 观察下面一系列等式:3 2-12=8=81;5 2-32=16=82;7 2-52=24=83;9 2-72=32=84.你从中发现了什么规律?用代数式表述这个规律.例 7. 你能很快算出 19952 吗?分析:为了解决这个问题,

11、我们考察个位数为 5 的自然数的平方,任意一个个位数为5 的自然数可用代数式表示为 10n+5,问题即求(10n+5) 2 的值(n 为自然数) ,试分析n1,n2,n=3 ,这些简单情况,从中探索其中的规律,并归纳、猜想出结论(在下面横线上填上你的探索结果).(1)通过计算,探索规律:152=225,可写成 1001(1+1)+25 ,252=625,可写成 1002(2+1)+25 ,352=1225,可写成 1003(3+1)+25 ,452=2025,可写成 1004(4+1)+25 ,8752=5625,可写成_,852=7225,可写成_,(2)从第(1)题的结果,归纳、猜想得:(

12、10n+5) 2_.(3)根据上面的归纳、猜想,请算出:1995 2_.例 8. 若 a+2004=b+2005=c+2008,则(a-b) 2+(b-c) 2+(a-c) 2= .例 9. 已知代数式 的值是 8,那么代数式 的值是 .132x 20142x【方法总结】1. 字母表示数的思想引入字母表示数,是从算术进入代数的重要标志之一,正确地理解用字母表示数的意义,是学好数学基础知识的基本要求.2. “特殊与一般”的思想方法从几个简单的、个别的、特殊的情况去研究、探索、归纳出一般的规律和性质,反过来,应用一般的规律和性质去解决特殊的问题,这是数学中经常使用的思想方法,列代数式和求代数式的值

13、,就体现了这种思维方法.3. 整体思想从大处着眼,由整体入手,通过细心的观察和深入的分析,找出整体与局部的有机联系,从整体上把握问题,从而在客观上寻求解决问题的途径的一种常用的方法.【模拟试题】 (答题时间:90 分钟)一、细心选一选(每题 2 分,共 20 分)1. 用字母表示加法交换律,错误的是( ).A. a+b=b+a B. m+n=n+m C. pq=qp D. x+y=y+x2. 如果 m 表示奇数,n 表示偶数,则 m+n 表示( ) .A. 奇数 B. 偶数 C. 合数 D. 质数 93. 已知一个三位数,它的百位数字是 a,十位数字是 b, 个位数字是 c,则这个三位数字是(

14、 ).A. abc B. a+b+c C. 100a+10b+c D. 100c+10b+a4. 下列代数式的意义是 a,b 的平方和的是( ) .A.(a+b) 2 B. a+b2 C. a2+b D. a2+b25. 用语言叙述 -2 表示的数量关系中,表达不正确的是( ) .1A. 比 a 的倒数小 2 的数 B. 比 a 的倒数大 2 的数C. a 的倒数与 2 的差 D. 1 除以 a 的商与 2 的差 6. 下列说法:a 与 均是代数式, 表示 a 除以 c 再乘 b, b 表bccb%60a示 a 与 b 的和的 60%, 表示 的差的平方其中正确的有( ).2)(a、A. B.

15、 C. D. 7. 已知 a-b=5, c+d=-3, 则( b+c)- (a-d)的值为( ).A. 2 B. 2 C. 8 D. 88. 当 ( ).的 值 是时 , 代 数 式 11xxA. 3 B. C. D. 23723*9. 当 ( ).的 值 为, 那 么的 值 是时 , 代 数 式 a062axxxA. 1 B. 13 C. 0 D. 6*10. 已知-x+2y=6,则 3(x-2y ) 2-5(x-2y)+6 的值是( ) .A. 84 B. 144 C. 72 D. 360二、仔细填一填(每题 2 分,共 20 分)11. 小明跑步速度为 v 米/秒,问他的百米成绩为 _秒

16、.12. 用代数式表示比 m 的 4 倍大 2 的数为_.13. 小彬上次数学成绩 80 分,这次成绩提高了 a%,这次数学成绩为 _.14. 三个连续的自然数,中间的一个为 n,则第一个为 ,第三个为 .15. 矩形的一边长为 a2b,另一边比第一边大 2a+b,则矩形的周长为_.*16. 如果 a=2b, b=4c,那么代数式 ._35的 值 为bca*17. 细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成 4 个,第三次分裂成 8 个,那么第 n 次时细胞分裂的个数为 个.18. 当 x=7,y=4,z=0 时,代数式 x(2xy+3z)的值为_.*19. 某人骑自行车走了 0

17、.5 小时,然后乘汽车走了 1.5 小时,最后步行 a 千米,已知骑自行车与汽车的速度分别为 v1 千米/秒和 v2 千米/ 秒,则这个人所走的全部路程为 _.20. 教学楼大厅面积 S m2,如果矩形地毯的长为 a 米,宽 b 米,则大厅需铺这样的地毯_块.三、认真算一算:(每小题 6 分,共 24 分)1021. (1)在式子 中,已知 米秒, 秒, 米/秒 ,201gtus80u20t8.9g2求 .s(2)已知 ,求代数式 .3cba, abc22*(3)已知 a 是最小的正整数,b、c 是有理数,且3+b+(2a-c) 2=0,求的值 .24a*(4)如图所示,根据图中标明的尺寸,

18、写出求图中阴影部分的面积 S 的公式,并求当 x=3 时,阴影部分的面积( 取 3.14). 四、努力解一解(共 36 分)22. 按如图所示方式在餐桌上摆碗:(1)一张餐桌上放 6 个碗,3 张餐桌上放_个碗;(2)按照上图继续排列餐桌,完成下表.桌子的张数 3 4 5 6 n 摆碗数23. 某校举办跳绳比赛,第一组有男生 m 人,女生 n 人,男生平均每分钟跳 105 次,女生平均每分钟跳 110 次,一分钟第一组学生共跳绳多少次?当 m=5,n=5 时,结果是多少?24. 今年初共青团中央发出了“保护母亲河的捐款活动” ,某校初一两个班的 115 名学生积极参加,已知甲班 的学生每人捐款

19、 10 元,乙班 的学生每人捐款 10 元,两班其余学3152生每人捐 5 元,设甲班有学生 x 人,试用代数式表示两班捐款的总额.*25. 某商店进货价降低 8%,而售价保持不变,结果使商店的利润可提高 10%,问原来利润是百分之几? 26. 已知 a=3,b=2 ,计算:( 1)a 2+2ab+b2;(2) (a+b ) 2. (3)当 a=2,b=1 或a=4, b=3 时,分别计算两式的值,从中可发现怎样的规律?*27. 一根弹簧原来的长度是 10 厘米,当弹簧受到的拉力为 F 千克(F 在一定范围内)时,弹簧的长度用 l 表示,测得有关数据如下表:拉力 F(kg) 弹簧长度 l(cm

20、)1 10+0.52 10+13 10+1.5114 10+2思考:(1)写出当 F=7 kg 时,弹簧的长度 l 为多少厘米?(2)写出拉力为 F 时,弹簧长度 l 与 F 的关系式.(3)计算当拉力 F=100 kg 时弹簧的长度 l 为多少厘米?2.3 整式【本讲主要内容】一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力. 二. 知识要点:1. 单项式(1)如 3a,xy,6m 2, k 等,它们都是数与字母的积,像这样

21、的式子叫做单项式. 对于单项式的理解有以下几点需要注意:单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式 (x1) 3 不是单项式. 15字母不能出现在分母里,如 不是单项式,因为它是 n 与 m 的除法运算. nm单独的一个数或一个字母也是单项式,如 0,2,a 都是单项式. (2)单项式的系数:是指单项式中的数字因数,如8xy 2, 的系数分别是2ab238,;如果一个单项式只含有字母因数,它的系数就是 1 或1,如 m 就是 1m,其系23数是 1;a 2b 就是1a 2b,其系数是1. (3)单项式的次数:是指一个单项式中所

22、有字母的指数的和. 掌握好这个概念要注意以下几点:从本质上说,单项式的次数就是单项式中字母因数的个数,如 5a3b 就是 5aaab,有4 个字母因数,因此它的次数就是 4. 确定单项式的次数时,不要漏掉“1”. 如单项式 3x2yz3 的次数是 2136,字母因数的指数为 1 时,不能认为它没有指数. 单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式( ) 2a3b4c5 的次数是字母 a、b、c 的指数和,即 34512,而不是12234514. 单独一个非零数字的次数是零. 2. 多项式12(1)多项式:是指几个单项式的和. 其含义有:必须由单项式组成;体现

23、和的运算法则,如 3a2b5 是多项式,而 3x 中,2y不是单项式,故 3x 不是多项式. 2y 2y(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号). 另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是 n,这一项就叫做 n 次项. 如多项式 x32xyx 2x y1 是六项式,x 3 的次数是 3,叫三次项,2xy、 x2 的次数都是 2,都叫二次项,x、y 的次数都是 1,都叫一次项,后面的1 叫常数项. (3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单

24、项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式 3x42y 21 的次数是4,而不是 426,故此多项式叫做四次三项式. 4. 单项式与多项式统称为整式. 三. 重点难点:1. 重点:单项式和多项式的有关概念. 2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例 1. (1) (2008 年宁夏)某市对一段全长 1500 米的道路进行改造. 原计划每天修 x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的 2 倍还多35 米,那么修这条路实际用了_天. (2) (2008 年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为

25、 a 元,零售价比进价高 m%,后因市场变化,该商店把零售价调整为原来零售价的 n%出售,那么调整后每件衬衣的零售价是 ( )A. a(1m%) (1n%)元 B. am%(1n% )元C. a(1m%)n%元 D. a(1m %n)元例 2. 找出下列代数式中的单项式,并写出各单项式的系数和次数. x7, x, ,8a 3x,1,x . 13 23a 13例 3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式. acb13例 4. 已知多项式2x 2a1 y2 x3y3 是七次多项式,则 a_.

26、 13 x4y5例 5. 把代数式 2a2c3 和 a3x2 的共同点填写在下列横线上. 例如:都是整式. (1)都是_;(2)都是_. 例 6. 如果多项式 x4(a1)x 35x 2(b3)x1 不含 x3 和 x 项,求 a、b 的值. 【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具. 2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念. 【模拟

27、试题】 (答题时间:40 分钟)一. 选择题1. 在代数式2x 2,ax , , ,1a,b,32a, 中单项式共有 ( )12x2x3 x y2A. 2 个 B. 4 个 C. 6 个 D. 8 个*2. 下列说法不正确的是 ( )A. ab 2c 的系数是1,次数是 4 B. 1 是整式xy3C. 6x23x1 的项是 6x2,3x,1 D. 2R2R 2 是三次二项式3. 下列整式中是多项式的是 ( )14A. B. xy C. D. a 2b312 ab34. 下列说法正确的是 ( )A. 单项式 a 的指数是零 B. 单项式 a 的系数是零C. 24x3 是 7 次单项式 D. 1

28、是单项式5. 组成多项式 2x2x 3 的单项式是下列几组中的 ( )A. 2x2,x,3 B. 2x2,x,3 C. 2x2,x,3 D. 2x2,x,3*6. 多项式 中,二次项的系数是 ( )2x2 y3A. 2 B. 1 C. D. 23 13*7. 下列说法正确的是 ( )A. 单项式 的系数是 2,次数是 2 2x2y5B. 单项式 a 的系数为 0,次数为 2C. 单项式510 2m2n2 的系数为5,次数为 5D. 单项式 的系数为 ,次数为 36a2b7 678. 下列单项式中的次数与其他三个单项式次数不同的是 ( )A. xy2z2 B. 0.96a 5b C. m 5 D

29、. 8a2b354*9. (2007 年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x 32xy 22xyzy 3 是 3 次齐次多项式. 若 xm2 y23xy 3z2 是齐次多项式,则 m等于 ( )A. 1 B. 2 C. 3 D. 4二. 填空题1. (2007 年云南)一台电视机的原价为 a 元,降价 4后的价格为_元. 2. 是_次单项式,系数是_. ab2c53*3. 代数式 mn, , ,ab 2c3,0,a 23a1 中,单项式有_个,多23 5x2y33 x 92项式有_个. 4. 多项式 3x 27 是_次_项式,最高次项的系数是x3y2

30、_,常数项是_. *5. 当 x2 ,y 1 时,单项式 xy5 的值为_. 12 35三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数. abc,2ab 2c,x 2y,b,3x 25x1,xy a,x 4x 2y2y 4,a 2b 2, r 2,2 4a2b12 122. 152. 说出下列多项式是几次几项式:(1)a 3abb 3(2)3a3a 2bb 2a1(3)3xy 24x 3y12(4)9x 416x 2y225y 24xy1四. 综合提高题*1. 已知单项式 的次数是 8,求 m 的值. xmy2z72. 说出下列各式是几次几项式?最高次项是什么?最高次项的系数

31、是多少?常数项是多少?(1)7x 23x 3yy 36x3y 21(2)10xy 30.5(3) x xy x2y2x 3112 13 13*3. 一个关于字母 a、b 的多项式,除常数项外,其余各项的次数都是 3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若 a、b 满足ab(b1) 20,求你写出的多项式的值. 2.4 整式的加减【本讲主要内容】一. 本周教学内容整式的加减二. 教学目标和要求1. 掌握整式加减运算的一般步骤162. 能熟练地进行整式的加减运算三. 教学重点和难点重点和难点都是整式的加减运算四. 知识要点1. 整式加减的实质几个整式相加减,通常用括号把每一个整式

32、括起来,再用加减号连接。整式的加减实质上就是合并同类项。2. 整式加减的一般步骤(1)根据题意列出代数式。(2)如果遇有括号,按去括号法则先去括号。(3)合并同类项。【典型例题】例 1. 列式计算:(1)求整式 加 的和与 的差。yx263237yx32325yxyx(2)求比多项式 少 的多项式。2235baa5例 2. 计算: yxyxxy2231)(3121例 3. 化简求值: ,其中 ,)(3)2(baa32b例 4. 已知 , ,并且 ,问 C 是什22cbaA2234cbaB0BA么样的多项式。例 5. 三角形的周长为 48,第一边长为 ,第二边的 2 倍比第一边少 ,求ba232

33、ba17第三边长是多少?例 6. 已知 ,求 的值。05)2(ba ababba4)2(322【模拟试题】一. 填空1. 单项式 与 的差是 。xy592. 多项式 与多项式 的和 。24238723xx3. 多项式 加上 等于 。yx 235y4. 减去 等于 的代数式是 。257625. 已知 ,则 。ba)(3ab二. 选择1. 下列说法正确的是( )A. 单项式与单项式的和仍是单项式 B. 多项式与单项式的和仍是多项式C. 多项式与多项式的和仍是多项式 D. 整式与整式的和仍是整式2. 化简 的结果是( ))(2yxyxA. B. C. D. 23yx23. 若 是一个六次多项式, 也

34、是一个六次多项式,则 一定是( )mnnmA. 十二次多项式 B. 六次多项式 C. 次数不高于六次的整式 D. 次数不低于六次的整式4. 已知 为正整数,多项式 减去 的 2 倍的差一定是( )k7362k62kA. 奇数 B. 偶数 C. 5 的倍数 D. 以上都不对5. 已知 , ,则 的值是( )0xy4xyxA. B. C. D. 不能确定210三. 解答题181. 已知多项式 A 减去 得 ,求多项式 A。423xx578232. 已知 , ,求:(1) ;5yx23yB)(2BB(2)当 , 时,求(1)中代数式的值。23. 已知 ,求 的值。0)(32baabab3)4(744. 长方形的一边是 ,另一边比它多 ,则这个长方形的周长是多少?nmnm

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报