ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:656KB ,
资源ID:3949331      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3949331.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019届中考数学复习 第一部分 第二讲 C组冲击金牌课件.ppt)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2019届中考数学复习 第一部分 第二讲 C组冲击金牌课件.ppt

1、解题技巧,1.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系 (1)求抛物线的解析式; (2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关 系h= (t19)2+8(0t40),且当水面到顶 点C的距离不大于5米时,需禁止船只通行,请 通过计算说明:在这一时段内,需多少小时禁 止船只通行?,解题技巧,(1)点C到ED的距离是11米,OC=11

2、, 设抛物线的解析式为y=ax2+11, 由题意得B(8,8),64a+11=8, 解得a= y= x2+11; (2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至少为115=6(米), 6= (t19)2+8, (t19)2=256, t19=16, 解得t1=35,t2=3, 353=32(小时) 答:需32小时禁止船只通行,解题技巧,2.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元经市场调研发现:甲种产品的销售单价定在35元到70元之间较为合理,设甲种产品的销售单价为x(元)

3、,年销售量为y(万件),当35x50时,y与x之间的函数关系式为y=200.2x;当50x70时,y与x的函数关系式如图所示,乙种产品的销售单价在25元(含)到45元(含)之间,且年销售量稳定在10万件物价部门规定这两种产品的销售单价之和为90元 (1)当50x70时,求出甲种产品的年销售量y(万件) 与x(元)之间的函数关系式 (2)若公司第一年的年销售量利润(年销售利润=年销 售收入生产成本)为W(万元),那么怎样定价,可 使第一年的年销售利润最大?最大年销售利润是多少?,解题技巧,(1)设y与x的函数关系式为y=kx+b(k0), 函数图象经过点(50,10),(70,8),当50x70

4、时,所以y与x的函数关系式为 y=0.1x+15;,(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50x70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和投资成本)不低于85万元请直接写出第二年乙种产品的销售单价m(元)的范围,解题技巧,(2)乙种产品的销售单价在25元(含)到45元(含)之间, 解之得45x65,45x50时, W=(x30)(200.2x)+10(90x20), =0.2x2+16x+100=0.2(x280x+1600)+320+100, =0.2(x40)2+420, 0.20,x40时,W随x的增

5、大而减小, 当x=45时,W有最大值, W最大=0.2(4540)2+420=415万元; 50x65时, W=(x30)(0.1x+15)+10(90x20), =0.1x2+8x+250=0.1(x280x+1600)+160+250, =0.1(x40)2+410,,解题技巧,0.10, x40时,W随x的增大而减小, 当x=50时,W有最大值,W最大=0.1(5040)2+410=400万元 综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元; (3) 30m40 根据题意得,W=0.1x2+8x+250+415700=0.1x2

6、+8x35, 令W=85,则0.1x2+8x35=85,解得x1=20,x2=60 又由题意知,50x65,根据函数与x轴的交点可知50x60,即5090m60, 30m40,解题技巧,3.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数,速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数 为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:,解题技巧,(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准

7、确的是 (只填上正确答案的序号) q=90v+100;q= ;q=2v2+120v (2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少? (3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题 市交通运行监控平台显示,当12v18时道路出现轻度拥堵试分析当车流密度k在什么范围时,该路段将出现轻度拥堵; 在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值,解题技巧,(1)函数q=90v+100,q随v的增大而增大,显然不符合题意 函数q= ,q随v的增大而减小,显然不符合题意 故刻画q,v关系最准

8、确的是 故答案为 (2)q=2v2+120v=2(v30)2+1800, 20, v=30时,q达到最大值,q的最大值为1800 (3)当v=12时,q=1152,此时k=96, 当v=18时,q=1512,此时k=84, 84k96 当v=30时,q=1800,此时k=60, 在理想状态下,假设前后两车车头之间的距离d(米)均相等, 流量q最大时d的值为,解题技巧,4.某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比试行中得到了

9、表中的数据(1)用含x和n的式子表示Q; (2)当x=70,Q=450时,求n的值; (3)若n=3,要使Q最大,确定x的值; (4)设n=2,x=40,能否在n增加m%(m0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由 参考公式:抛物线y=ax2+bx+c(a0)的顶点坐标是,解题技巧,(1)设W=k1x2+k2nx,则Q=k1x2+k2nx+100, 由表中数据,得 Q= x2+6nx+100; (2)将x=70,Q=450代入Q得, 450= 702+670n+100, 解得:n=2; (3)当n=3时,Q= x2+18x+100= (x90)2+9

10、10, 0, 函数图象开口向下,有最大值, 则当x=90时,Q有最大值, 即要使Q最大,x=90; (4)由题意得,420= 40(1m%)2+62(1+m%)40(1m%)+100, 即2(m%)2m%=0, 解得:m%= 或m%=0(舍去),m=50,解题技巧,5.某厂按用户的月需求量x(件)完成一种产品的生产,其中x0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1n12),符合关系式x=2n22kn+9(k+3)(k为常数),且得到了表中的数据 (1)求y与x满足的关系

11、式,请说明一件产品的利润能否是12万元; (2)求k,并推断是否存在某个月既无盈利也不亏损; (3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m,解题技巧,(1)由题意,设y=a+ 由表中数据可得:由题意,若12=18(6+ ),则 =0, x0, 0, 不可能; (2)将n=1、x=120代入x=2n22kn+9(k+3), 得:120=22k+9k+27,解得:k=13, x=2n226n+144, 将n=2、x=100代入x=2n226n+144也符合, k=13; 由题意,得:18=6+ 解得:x=50,,解题技巧,50=2n226n+144,即n213n+47=0, =(13)241470, 方程无实数根, 不存在; (3)第m个月的利润为W, W=x(18y)=18xx(6+ ) =12(x50)=24(m213m+47), 第(m+1)个月的利润为W=24(m+1)213(m+1)+47=24(m211m+35), 若WW,WW=48(6m), m取最小1,WW取得最大值240; 若WW,WW=48(m6), 由m+112知m取最大11,WW取得最大值240; m=1或11,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报