ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:1.05MB ,
资源ID:3887488      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3887488.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012海淀高三二模文科数学试题及答案.doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2012海淀高三二模文科数学试题及答案.doc

1、2012 海淀高三二模数学文科 第 1 页 共 8 页海 淀 区 高 三 年 级 第 二 学 期 期 末 练 习 数 学(文科)2012.05一、选择题:本大 题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、函数 的值域是 21,2yxx=-+CPxy交于 两点,点 是坐标原点. 给出三个命题: ; 的面积为定值;ABOAB=OA曲线 上存在两点 ,使得 为等腰直角三角形其中真命题的个数是 C,MN(A) (B) (C) (D)开始 2x=-2输出结束是否输入 x主主主主主主主主主2012 海淀高三二模数学文科 第 2 页 共 8 页二、填

2、空题:本大题共 6 小题,每小题 5 分,共 30 分,把答案填在题中横线上.9、复数 ,则 = . 31iz+z10、已知双曲线 的渐近线方程是 ,那么此双曲线的离心率为 . 来源:21xyab- 2yx=Z#xx#k.Com11、在 中,若 , , 的面积为 ,则 = . ABC20=6cABC93a12、在面积为 1 的正方形 内部随机取一点 ,则 的面积大于等于 的概率是_ABDP1413、某同学为研究函数 的性质,构造了如图所示的两个边长为 1 的22()1(1)01)fxx=+-正方形 和 ,点 是边 上的一个动点,设 ,ABCEFPCCx=则 . 请你参考这些信息,推知函数 的(

3、)Pfx+()f极值点是 ;函数 的值域是 . 14、已知定点 ,直线 ( 为常数). 若点 到直线 的距离相等,(0,2),)MN-:20lkxy-+=k,MNl则实数 的值是 ;对于 上任意一点 , 恒为锐角,则实数 的取值范围是 . klPMN三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算步骤.15、 (本小题满分 13 分)已知等差数列 的前 项和为 ,公差 , ,且 成等比数列. nanS0d5346Sa=+139,a()求数列 的通项公式; ()求数列 的前 项和公式 .1nS16、 (本小题满分 13 分)在一次“知识竞赛”活动中,有 四道题,其

4、中 为难度相同的容易题, 为中档题,12,ABC12,AB为较难题. 现甲、乙两位同学均需从四道题目中随机抽取一题作答.C()求甲、乙两位同学所选的题目难度相同的概率;()求甲所选题目的难度大于乙所选题目的难度的概率.EFA BCDP2012 海淀高三二模数学文科 第 3 页 共 8 页17、 (本小题满分 14 分)在正方体 中, 棱 的中点分别是 , 如图所示ABCD,ABCD,EFGH()求证: 平面 ;EFG()求证: 平面 ;()判断点 是否共面? 并说明理由.,H18、 (本小题满分 13 分)已知函数 ( , ).2()3xaf0aR()求函数 的单调区间;()当 时,若对任意

5、,有 成立,求实数 的最小值.1a12,)x12()fxfm19、 (本小题满分 13 分)已知椭圆 : 的右焦点为 ,且点 在椭圆 上.C21(0)xyab(1,0)F2(1,)C()求椭圆 的标准方程;()已知点 ,动直线 过点 ,且直线 与椭圆 交于 , 两点,证明: 为定值. 5(,0)4QlFlCABQAB20、 (本小题满分 14 分)将一个正整数 表示为 的形式,其中 , ,且n12(*)paa+N *iaN1,2ip=,记所有这样的表示法的种数为 (如 4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故paa21 nf).5)4(f()写出 的值,并说明理由

6、;)5(,3f()证明: ( ) ;1n+-1,2n=()对任意正整数 ,比较 与 的大小,并给出证明)(f )2()nfNMHGFED CBAD CBA2012 海淀高三二模数学文科 第 4 页 共 8 页来源:Zxxk.Com海淀区高三年级第二学期期末练习数 学(文科)201205参考答案 一.选择题:本大题共 8 小题,每小题 5 分,共 40 分.题号 1 2 3 4 5 6 7 8答案 B D C A C A A C二.填空题:本大题共6小题,每小题5分,共30分.9、 ;10、 ;11) ;12、 ;13、 , ;14、1或 ;2563125,2+31(,)(,)7-+注:(13)

7、 、 (14)题第一空3分;第二空2分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15 (本小题满分 13 分)解:()因为 ,所以 . 3 分5346Sa=+1154(2)62daa=+因为 成等比数列,所以 . 5 分19, (8)由,及 可得: .6 分0d1,d所以 . 7 分2na=()由 可知: .来源:学9 分2(2)nnS+=所以 . 11 分11()n-所以 121nSS-+ 11123nn=-+-+. 13 分=-所以 数列 的前 项和为 . 1nS1n+16、 (本小题满分 13 分)解:由题意可知,甲、乙两位同学分别从四道题中随机抽取

8、一题,所有可能的结果有 16 个,它们是:, , , , , , , , , ,1(,)A12(,)1(,)AB1(,)C21(,)A2(,)2(,)AB2(,)C1(,)A2(,)B(,)2012 海淀高三二模数学文科 第 5 页 共 8 页, , , , , . 3 分(,)BC1(,)A2(,)(,)CB(,)()用 表示事件“甲、乙两位同学所选的题目难度相同” ,则 包含的基本事件有: , ,MM1(,)A12(,), , , . 所以 .8 分21(,)2(,)(,)(,)63()=18P()用 表示事件“甲所选题目的难度大于乙所选题目的难度” ,则 包含的基本事件有: ,N N1(

9、,)B, , , . 所以 .13 分2(,)BA1(,)C2(,)A(,)CB5()6N17、 (本小题满分 14 分)()证明:连接 .在正方体 中, , .DADBC所以 四边形 是平行四边形.所以 .AB因为 分别是 的中点,,FG,C所以 .所以 . 2 分F因为 是异面直线,所以 平面 .,EAEFG因为 平面 , 所以 平面 .4 分 D()证明:连接 .BC在正方 体 中, 平面 , 平面 ,ABCBCB所以 .在正方形 中, ,因为 平面 , 平面 ,AA,B=所以 平面 . 6 分CAB因为 平面 ,所以 .7 分 C因为 ,所以 .FGFG同理可证: .E因为 平面 ,

10、平面 , ,EF=所以 平面 . 9 分AC()点 不共面. 理由如下: 10 分,DHF假设 共面. 连接 . ,CAH由()知, , AB因为 平面 , 平面 . CDB所以 平面 . 12 分D因为 ,所以 平面 平面 .H HFCF因为 平面 ,所以 .A A所以 ,而 与 相交,矛盾.CFBBHGFED CBAD CBAHGFED CBAD CBAHGFED CBAD CBA2012 海淀高三二模数学文科 第 6 页 共 8 页所以 点 不共面. 14 分,ADHF18、 (本小题满分 13 分)解: .令 ,解得 或 . 2 分22()3)xaf()0fxxa3()当 时, , 随

11、着 的变化如下表0()ffx,3a3a(3,)aa(,)a()f 00x 极小值 极大值 函数 的单调递增区间是 ,函数 的单调递减区间是 , .4 分()f (3,)a()fx(,3)a(,)当 时, , 随着 的变化如下表0a()fxfxx,(,3)a(,)()f00x 极小值 极大值 函数 的单调递增区间是 ,函数 的单调递减区间是 , . 6 分()f (,3)a()fx(,)a(3,)()当 时,由()得 是 上的增函数,是 上的减函数.1afx1(1,)又当 时, . 8 分x2()03f所以 在 上的最小值为 ,最大值为 .10 分f,()6f()2f所以 对任意 , .12)x

12、12(13xf所以 对任意 ,使 恒成立的实数 的最小值为 .13 分,3,()fm319、 (本小题满分 13 分)()解: 由题意知: . 根据椭圆的定义得: ,即 .3 分1c=222(1)()a=-+2a=所以 .所以 椭圆 的标准方程为 . 4 分2b-C2xy()证明:当直线 的斜率为 0 时 , .l(2,)(,0)AB则 .6 分557(2,)(441QAB2012 海淀高三二模数学文科 第 7 页 共 8 页当直线 的斜率不为 0 时,设直线 的方程为: , .l l1xty=+()12,AxyB由 可得: . 显然 .21,xyt+= 2()0tt-9 分12,.tyt-=

13、+因为 , ,1xy21xty=所以 1 2125(,)(,)()44ttyy-+212126tyty=+22146tt. 即 . 13 分27()tt-=-716QAB20、 (本小题满分 14 分)()解:因为 3=3,3=1+2,3=1+1+1,所以 3)(f因为 5=5,5=2+3,5=1+4,5=1+1+3,5=1+2+2,5=1+1+1+2,5=1+1+1+1+1,所以 3 分7)5(f()证明:因为 ,把 的一个表示法中 的 去掉,就可得到一个 的表示法;反之,21n1n1a=1n在 的一个表示法前面添加一个 “1+”,就得到一个 的表示法,即 的表示法中 的表示法种数等n +n1a=于 的表示法种数,所以 表示的是 的表示法中 的表示法数 .)(1(nff11a即 8 分)+-()结论是 .)(f )2()2nf证明如下:由结论知,只需证 ).1()2(1nff由()知: 表示的是 的表示法中 的表示法数, 是)(1(fnf1a )1()2(nff的表示法中 的表示法数2na考虑到 ,把一个 的 的表示法中的 加上 1,就可变为一个 的 的表示法,21np 1a2012 海淀高三二模数学文科 第 8 页 共 8 页这样就构造了从 的 的表示法到 的 的表示法的一个对应,所以有1an1a2n14 分).()2()(fffnf

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报