1、有理数期末复习导学案一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。在数的研究上它起着重要的作用。它使数和最简单的图形直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。但要注意数轴上的所有点并不是都有有理数和它对应。借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。2、相反数是指只有符号不同的两个数。零的相反数是零。互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。有了相反数的概念后,有理数的减法运算就可以转化为加法运算。3、绝对
2、值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。对于任何有理数 a,都有 0。4、倒数可以这样理解:如果 a 与 b 是非零的有理数,并且有 ab=1,我们就说 a 与 b 互为倒数。有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数零正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成 a10n的形式,其中用式子表示| a|的范围是 0|a
3、|10。7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数。由此可得,互为相反数的两数相加的 0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。2、有理数的减法法则:减去一个数等于加上这个数的相反数。注意:一切加法和减法运算都可以统一成加法运算。3、有理数的乘法法则:两数相乘,同号得正,异号得负,绝
4、对值相乘。任何数同零相乘都得零。4、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数都得零。5、有理数混合运算的顺序:有理数混合运算中,先算乘方,再算乘除,最后算加减。运算中,如果有括号,就先算括号里面的。 、6、有理数的运算律:交换律:ab=ba , ab=ba.结合律:(ab)c=a(bc) , (ab)c=a(bc).乘法对加法的分配律:a(bc)=abac.三、值得注意的几个问题1、数的范围扩大到有理数后,一定要注意考虑负数。如不能认为“最小的整数是零” 。2、有理数都可以用数轴上的点表示;但数轴上的点不都表示有理数。3、单独的一个数或字母,省略
5、的指数是“1” ,而不是零。4、对负数或分数进行乘方运算要注意加括号。如当 a=-3 时,a 2=(-3)2=9;而不是 a2=-32=-9。5、有理数的运算要特别注意符号。基础回顾与练习一、 【正负数】 有理数的分类:_统称整数,试举例说明。 _统称分数,试举例说明。_统称有理数。基础练习1把下列各数填在相应额大括号内:1,0.1,-789,25,0,-20,-3.14,-590,6/7正整数集 ;正有理数集 ;负有理数集 ;负整数集 ;自然数集 ;正分数集 负分数集 2某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8 元的意义是 ;如果这种油的原价是 76 元,那么现在的
6、卖价是 。二、 【数轴】 规定了 、 、 的直线,叫数轴基础练习1.如图所示的图形为四位同学画的数轴,其中正确的是( )2.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“”号连接起来。4,-|-2|, -4.5, 1, 03.下列语句中正确的是( )A.数轴上的点只能表示整数 B.数轴上的点只能表示分数 C.数轴上的点只能表示有理数 D.所有有理数都可以用数轴上的点表示出来4. 比3 大的负整数是_; 已知是整数且-40)时,a= ;(2)当 a 是负数(即 a0)时,a= ;(3)当 a=0 时,a= .65.4710 5精确到 位;7.3.403010 5精确到千位是 .8某数有四舍五入得到 3.240,那么原来的数一定介于 和 之间.9用四舍五入法求 30951 的近似值(精确到百位) ,结果是 .