1、蚂蚁怎样走最近,1.3,如图,有一个圆柱体,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的B处的食物,需要爬行的最短路程是多少?(的值取3),问题的提出:,蛋糕,B,.,B,B,12,O,A,3,蛋糕,A,C,做一做:,李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,,(1)你能替他想办法完成任务吗?,(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?,做一做:,做一做:,(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?
2、BC边与AB边呢?,试一试:,在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?,D,A,B,C,解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,,在直角三角形ABC中,BC=5尺,由勾股定理得,BC2+AC2=AB2,即 52+ x2= (x+1)2,25+ x2= x2+2 x+1,,2 x=24,, x=12, x+1=13,答:水池的水深12尺,这根芦苇长13尺。,图(1),图(2),A,B,C,试一试,下图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同伴交流设计方案?,图(1),图(2),A,B,C,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回答用的是什么方法.,算一算,小结,本节课主要是应用勾股定理和它的逆定理来解决实际问题,在应用定理时,应注意:没有图的要按题意画好图并标上字母,