ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:903.50KB ,
资源ID:336553      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-336553.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高等数学-第二节-对面积的曲面积分.ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高等数学-第二节-对面积的曲面积分.ppt

1、第二节 对面积的曲面积分,定义1 对于空间曲面, 如果上任意一点都有切平面, 当切点连续变动时, 切平面也连续转动, 此曲面称为光滑曲面.,本节下面所研讨的一系列问题皆与本章第一节所述问题完全类似.,一、对面积的曲面积分的定义,二、 对面积的曲面积分的性质,三、对面积的曲面积分的计算,四、对面积的曲面积分的应用,把曲面分成n片小曲面, 这些小曲面为S1,S2, ,Sn, Si也表示Si的面积(i=1,2,n).,一、对面积的曲面积分的定义,设有一曲面形构件, 它所占位置的空间曲面见图9-4,面密度为连续函数u=f(x, y, z), 利用分割、作和、取极限的方法求该构件的质量.,在Si上取点

2、Mi(i, i, i), 称Si任意取两点间距离的最大值为Si的直径,则曲面形构件的质量为,式中为n片小曲面直径中的最大值.,图9-4,定义2 设是光滑曲面, 函数u = f ( x, y, z ), 在上有界,分为n片小曲面, 这些小曲面为S1, S2, , Sn, Si 也表示Si 的面积 ( i =1, 2, , n ).,如果,存在, 则称该值f ( x, y, z )在上的对面积的曲面积分, 也称为第一型的曲面积分, 记成,在Si上取点Mi(i, i, i), 记为n片小曲面直径的最大值.,其中f ( x, y, z ) 称为被积分函数, 称为积分曲面.,如果是闭合曲面上的积分, 又

3、可记成,定理1 当f ( x, y, z )在光滑或分段光滑曲面上连续时,存在.,二、 对面积的曲面积分的性质,设下面所涉及的曲面积分是存在的, 则有下述性质,性质1 设k为常数, 则,性质2,性质3 将分成1 与2, 则,k为常数, A为的面积.,性质4,性质5 若在上 f ( x, y, z ) g ( x, y, z ), 则,性质7 当 f ( x, y, z )在光滑曲面上连续时, 必有 (, , )在上, 使得,性质6 在上若没m f ( x, y, z ) M, 则,其中A表示的面积.,三、对面积的曲面积分的计算,定理2 设曲面: 在z = z ( x, y ), 它在xOy面上

4、的投影区域为Dxy, z = z ( x, y ) 在Dxy上具有连续偏导数, f ( x, y, z ) 在上连续, 则有公式,如果曲面投影到yOz或 zOx面, 则有下述计算曲面积分的公式,定理3 设 f ( x, y, z )与满足定理 2 的条件, 若 f ( x, y, z ) = f ( x, y, - z ), 关于xOy对称, 1表示的位于xOy面上方的部分, 则有,若f ( x, y, z ) = f ( x, y, z ) , 则有,例1 求,其中为平面,中解出,在第一卦限中的部分.,将在xOy面上投影区域记为Dxy, 如图9-5,图9-5,例2 求,其中 : x2 + y

5、2 = R2, 0 z h (R 0),解法1 把分成前后两部分1与2, 则Dyz: - R y R, 0 z h,解法2 面积的微分dS = 2Rdz,故,设有一分布着质量的光滑曲面, 在点 ( x, y, z )处的面密度为连续函数f ( x, y, z ), 利用微元分析法不难推得下面各公式.,四、 对面积的曲面积分的应用,质量,设重心为,则,转动惯量,式中Ix, Iy, Iz, Io, 分别表示曲面对x轴, y轴, z轴以及原点的转动惯量.,例3 求抛物面壳的质量,此壳面密度为 = z.,所求质量为,故所求转动惯量为,例4 求面密度为常数 0的半球壳 x2 + y2 + z2 = a2 (0 z)对于z 轴的转动惯量.,作业,P89 1、2、5、6,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报