ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:932KB ,
资源ID:3295360      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3295360.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ETL流程、数据流图及ETL过程解决方案.ppt)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

ETL流程、数据流图及ETL过程解决方案.ppt

1、关于ETL相关问题的解决办法,ETL定义 模式及比较 ETL过程 问题分析 现状分析,目录,ETL定义,ETL定义涉及以下内容: ETL定义 ETL前提 ETL原则,ETL定义,定义: 数据的抽取(Extract)、转换(Transform)、装载(Load)的过程 目标: 数据优化。以最小代价(包括对日常操作的影响和对技能的要求) 将针对日常业务操作的数据转化为针对数据仓库而存储的决策支持型数据,ETL的前提 确定ETL范围 通过对目标表信息的收集,确定ETL的范围 选择ETL工具 考虑资金 运行的平台、对源和目标的支持程度、可编程的灵活性、对源数据变化的监测、数据处理时间的控制、管理和调度

2、功能、对异常情况的处理 确定解决方案 抽取分析、变化数据的捕获、目标表的刷新策略、数据的转换及数据验证,ETL过程中应尽量遵循以下原则: 应尽量利用数据中转区对运营数据进行预处理。保证数据的安全性、集成与加载的高效性。 ETL的过程应是主动“拉取”,而不是从内部“推送”,其可控性将大为增强。 流程化的配置管理和标准协议 数据质量的保证 正确性、一致性、完整性、有效性、可获取性,ETL定义 模式及比较 ETL过程 问题分析 现状分析,目录,ETL模式及比较,两种模式 异构 同构 模式比较的维度: 特点 环境,ETL模式-同构,ETL模式-异构,两种模式的比较-特点,两种模式的比较-环境,ETL定

3、义 模式及比较 ETL过程 问题分析 现状分析,目录,ETL过程,ETL过程: 数据抽取 数据清洗 数据转换 数据加载 ETL的问题,ETL过程-0层DFD,1层-数据抽取,1层-数据清洗,1层-数据转换,1层-数据加载,ETL过程-数据抽取,数据来源 文件系统,业务系统 抽取方式 根据具体业务进行全量或增量抽取 抽取效率 将数据按一定的规则拆分成几部分进行并行处理 抽取策略 根据具体业务制定抽取的时间、频度,以及抽取的流程,ETL过程-数据清洗,清洗规则: 数据补缺 对空数据、缺失数据进行数据补缺操作,无法处理的作标记 数据替换 对无效数据进行数据的替换 格式规范化 将源数据抽取的数据格式转

4、换成为便于进入仓库处理的目标数据格式 主外键约束 通过建立主外键约束,对非法数据进行替换或导出到错误文件重新处理,转换规则 数据合并 多用表关联实现,大小表关联用lookup,大大表相交用join(每个字段加索引,保证关联查询的效率) 数据拆分 按一定规则进行数据拆分 行列互换 排序/修改序号 去除重复记录 数据验证:lookup,sum,count 实现方式 在ETL引擎中进行(SQL无法实现的) 在数据库中进行(SQL可以实现),ETL过程-数据加载,ETL定义 模式及比较 ETL过程 问题分析 现状分析,目录,ETL执行时的异常处理,数据异常 将错误信息单独输出,继续执行ETL,错误数据

5、修改后再单独加载 中断ETL,修改后重新执行ETL 原则:最大限度接收数据 环境异常 对于网络中断等外部原因造成的异常,设定尝试次数或尝试时间,超数或超时后,由外部人员手工干预 其他异常 例如源数据结构改变、接口改变等异常状况,应进行同步后,再装载数据,ETL设计规范,DI开发规范 ETL开发首要确定的是流程的执行顺序及条件;其次是具体表映射关系的定义,在数据库性能允许的情况下,应该尽可能使用sql语句进行处理 对于具体映射和流程的命名,应该以维护方便为前提: 映射:以目标表名命名 流程:以流程要实现的功能命名 不允许使用临时的SQL语句操纵数据库,必须编写好的SQL脚本或存储过程 限定手工干

6、预只能运行某个流程,不允许运行单个过程 每一项手工操作必须留下记录,设计规范 SQL语句应书写规范,关键字全部大写,同时应增加注释 例如:/*表名:BSL_EMP_STATUS作者:CASEY日期:2007-12-17描述:人员状态中间表*/ 对于自定义列,列名应采用标准后缀 数字类型,*_NO 字符类型,*_CODE,常见问题的分析,字符集问题 缓慢变化维处理 增量、实时同步的处理 错误数据的检测 变化数据的捕获 抽取异常中止的处理,一、字符集问题,字符集定义 字符集是字符(包含字母,数字,符号和非打印字符等)以及所指定的内码所组成的特定的集合。是基于某种操作系统平台和某种语言集支持的。语言

7、集的集合被称为语言组,它可能包含一种或多种语言。,C/S字符集转换 直接转换 对于同一语言组的不同字符集之间,可以直接进行字符的转换,不会产生乱码通过Unicode转换 Unicode支持超过650种语言的国际字符集 Unicode系统缺省字符集utf-8,不同语言组的字符集进行直接转换的时候会出现乱码!,异构库字符集转换假设案例: 源数据库为Oracle 10g,字符集zhs 16gbk 目标数据库Sybase IQ,字符集为x, locales.dat文件对应操作系统下字符集设置为y x=cp936,y=cp936 结果:直接转换出现乱码。因为sybase目前支持的中文字符集有cp936、

8、eucgb、gb18030、UTF-8 方案:利用unicode进行转换 ODBC 利用字符集设置为UTF-8的中间库,二、缓慢变化维处理,缓慢变化维定义 在现实世界中,维度的属性并不是静态的,会随着时间的流失发生缓慢的变化。这种随时间发生变化的维度我们一般称之为缓慢变化维。 处理方式 不保留历史数据保留历史数据 起始-结束日期字段标识 真/假状态字段标识 版本号字段标识 代理键字段标识 自增序列 构造算法 保留且分析历史信息 添加新的维度列(数据增多,维度列增多),三、增量、实时同步的处理,整表匹配 同一个库中进行 写触发器 客户是否允许创建触发器 是否影响数据库性能 读数据库日志 Orac

9、le:设定物化视图日志,四、断点续传,利用源表的索引机制,抽取时按”数据块”顺序抽取 采取DBLink的机制,结合oracle自身机制优化效率 生成本地文件块,FTP传输减少对带宽影响。若中断,流程控制自动回滚加载当前数据块,ETL工具大都支持异常中止后读取断点重新加载的处理 支持对变化数据的捕获 与目标数据库松耦合,存储过程与ETL,存储过程:数据库内部利用索引的查找、排序、优化,不涉及输出、转换等操作 ETL:异构数据源或减少数据库负荷、sql嵌套的情况 如果仓库中同时需要明细和汇总数据,在仓库汇总;如果仓库不需要明细数据,ETL服务器上先排序然后汇总,减少业务系统负荷。 数据库不适合做大数据量汇总的话,排序后按排序键汇总,并行处理加动态分区(ETL厂商高性能汇总的机理),ETL定义 模式及比较 ETL过程 问题分析 现状分析,目录,ETL工具厂商,目前ETL工具来源: 数据库厂商自带的ETL工具,如OWB等; 第三方工具提供商,如Informatic等; 开源ETL工具,如kettle;,ETL和数据集成工具:ETL和数据集成的工作量占BI项目的40%,但是ETL工具约占BI市场的9%,其中很多应用是采用手工编码方式,ETL工具仍有待普及,?,?,谢 谢 !,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报