ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:16.58KB ,
资源ID:3246308      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3246308.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大数据时代的数据挖掘技术.doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

大数据时代的数据挖掘技术.doc

1、大数据时代的数据挖掘技术【摘要】随着大数据时代的到来,在大数据观念不断提出的今天,加强数据大数据挖掘及时的应用已成为大势所趋。那么在这一过程中,我们必须掌握大数据与数据挖掘的内涵,并对数据挖掘技术进行分析,从而明确大数据时代下数据挖掘技术的应用领域,促进各项数据的处理,提高大数据处理能力。【关键词】大数据时代;数据挖掘技术;应用大数据时代下的数据处理技术要求更高,所以要想确保数据处理成效得到提升,就必须切实加强数据挖掘技术的应用,才能更好地促进数据处理职能的转变,提高数据处理效率,以下就大数据时代下的数据挖掘技术做出如下分析。1.大数据与数据挖掘的内涵分析近年来,随着云计算和物联网概念的提出,

2、信息技术得到了前所未有的发展,而大数据则是在此基础上对现代信息技术革命的又一次颠覆,所以大数据技术主要是从多种巨量的数据中快速的挖掘和获取有价值的信息技术,因而在云时代的今天,大数据技术已经被我们所关注,所以数据挖掘技术成为最为关键的技术。尤其是在当前在日常信息关联和处理中越来越离不开数据挖掘技术和信息技术的支持。大数据,而主要是对全球的数据量较大的一个概括,且每年的数据增长速度较快。而数据挖掘,主要是从多种模糊而又随机、大量而又复杂且不规则的数据中,获得有用的信息知识,从数据库中抽丝剥茧、转换分析,从而掌握其潜在价值与规律 1。2.大数据时代下数据挖掘技术的核心-分析方法数据挖掘的过程实际就

3、是对数据进行分析和处理,所以其核心就在于数据的分析方法。要想确保分析方法的科学性,就必须确保所采用算法的科学性和可靠性,获取数据潜在规律,并采取多元化的分析方法促进问题的解决和优化。以下就几种常见的数据分析方法做出简要的说明。一是归类法,主要是将没有指向和不确定且抽象的数据信息予以集中,并对集中后的数据实施分类整理和编辑处理,从而确保所形成的数据源具有特征一致、表现相同的特点,从而为加强对其的研究提供便利。所以这一分析方法能有效的满足各种数据信息处理。二是关联法,由于不同数据间存在的关联性较为隐蔽,采取人力往往难以找出其信息特征,所以需要预先结合信息关联的表现,对数据关联管理方案进行制定,从而

4、完成基于某种目的的前提下对信息进行处理,所以其主要是在一些信息处理要求高和任务较为复杂的信息处理工作之中。三是特征法,由于数据资源的应用范围较广,所以需要对其特征进行挖掘。也就是采用某一种技术,将具有相同特征的数据进行集中。例如采用人工神经网络技术时,主要是对大批量复杂的数据分析,对非常复杂的模式进行抽取或者对其趋势进行分析。而采取遗传算法,则主要是对其他评估算法的适合度进行评估,并结合生物进化的原理,对信息数据的成长过程进行虚拟和假设,从而组建出半虚拟、半真实的信息资源。再如可视化技术则是为数据挖掘提供辅助,采取多种方式对数据的挖掘进行指导和表达 3。3.大数据时代数据挖掘技术要点的分析3.

5、1 数据挖掘技术流程分析在数据挖掘过程中,其技术流程主要是以下几点:首先做好数据准备工作,主要是在挖掘数据之前,就需要对目标数据进行准确的定位,在寻找和挖掘数据之前,必须知道自身所需的数据类型,才能避免数据挖掘的盲目性,在数据准备时,应根据系统的提示进行操作,在数据库中输入检索条件和目标,对数据信息资源进行分类和清理,以及编辑和预处理。其次是在数据挖掘过程中,由于目标数据信息已经被预处理,所以就需要在挖掘处理过程中将其高效正确的应用到管理机制之中,因而数据挖掘的过程十分重要,所以必须加强对其的处理。例如在数据挖掘中,我们可以结合数据挖掘目标要求,针对性的选取科学而又合适的计算和分析方法,对数据

6、信息特征与应用价值等进行寻找和归纳。当然,也可以结合程序应用的需要,对数据区域进行固定,并在固定的数据区域内分类的挖掘数据,从而得到更具深度和内涵以及价值的数据信息资源,并就挖掘到的数据结果进行分析和解释,从结果中将具有使用价值和意义的规律进行提取,并还原成便于理解的数据语言。最后是切实加强管理和计算等专业知识的应用,将数据挖掘技术实施中进行的总结和提取所获得的数据信息与评估结果在现实之中应用,从而对某个思想、决策是否正确和科学进行判断,最终体现出数据挖掘及时的应用价值。3.2 挖掘后的数据信息资源分析若仅仅是通过环境和背景实现数据挖掘技术的升级转型,那么其在合理性和科学性方面势必会存在一定的

7、欠缺,所以在形成网络信息化的环境时,我们应综合考虑社会经济的发展以及科技和文化因素带来的影响,以及其在未来发展中的变化趋势,这样才能更好地促进数据挖掘技术职能的转变,促进其最大化的满足其应用成效的发挥,也能有效的促进其职能作用的发挥。这主要是因为数据信息资源在挖掘后,其自身的职能作用将变得更加丰富,所以在信息技术环节下的数据挖掘技术随着限定条件的变化,而将数据挖掘信息应用于技术管理和决策管理之中,从而更好地彰显企业在经济活动中的物质性质与价值变化趋势,并结合数据变化特点和具体的表现规律,从而将数据信息的基本要素、质量特点、管理要求等展示出来,所以其表现的形式十分丰富。因而在数据挖掘之后的信息在

8、职能范围和表现形式方式均得到了丰富和拓展,而这也在一定程度上体现了网络拟定目标服务具有较强的完整性,且属于特殊的个体物品,同时也是对传统数据挖掘技术的创新和发展,从而更好地满足当前大数据时代对信息进行数据化的处理,并对不同种类业务进行整合和优化,从而促进数据挖掘技术服务的一体化水平。3.3 大数据背景下的数据挖掘技术应注重信息失真的控制数据挖掘技术的信息主要是源于大数据和社会,所以在当前数据挖掘技术需求不断加大的今天,为了更好地促进所挖掘数据信息的真实性,促进其个性化职能的发挥,必须在大数据背景下注重信息失真的控制,切实做好数据挖掘技术管理的各项工作。这就需要考虑如何确保数据挖掘技术在大数据背

9、景下的职能得到有效的发挥,尽可能地促进数据挖掘技术信息资源的升级和转型,以大数据背景为载体,促进整个业务和技术操作流程的一体化,从而更好地将所有数据资源的消耗和变化以及管理的科学性和有效性,这样我们就能及时的找到资源的消耗源头,从而更好地对数据资源的消耗效益进行评价,最终促进业务流程的优化,并结合大数据背景对数据挖掘技术的职能进行拓展,促进其外部信息与内部信息的合作,对数据挖掘技术信息的职能进行有效的控制,才能更好地促进信息失真的控制。4.数据挖掘技术在不同行业中的应用4.1 市场营销行业中数据挖掘技术的应用在数据挖掘技术方面应用最多的行业就属于市场营销行业了,这主要是因为数据挖掘能有效的解析

10、消费者的消费行为和消费习惯,从而利用其将销售方式改进和优化,最终促进产品销量的提升。与此同时,通过对购物消费行为的分析,掌握客户的忠诚度和消费意识等,从而针对性的改变营销策略,同时还能找到更多潜在的客户。4.2 制造业中数据挖掘技术的应用在制造业中加强数据挖掘技术的应用,其目的就在于对产品质量进行检验。具体的做法就是对所制造产品的数据进行研究,从而找出其存在的规则,并对其生产流程进行分析之后,对其生产的过程进行分析,从而更好地对生产质量的影响因素进行分析,并促进其效率的提升,最终提高企业的经济效益。具体而言,主要就是对各种生产数据进行筛选,从而得出有用的数据和知识,再采取决策树算法进行统计决策

11、,并从中选取正确决策,从而更好地对产品在市场中的流行程度,决定企业生产和转型的方向。4.3 教育行业中数据挖掘技术的应用教育行业中加强数据挖掘技术的应用,主要是为了更好地对学习情况、教学评估和心里动向等数据进行分类和筛选,从而为学校的教学改革提供参考和支持。比如为了更好地对教学质量进行评估,就需要对教学质量有关项目进行整合与存储,从而更好地促进其对教学质量的评估,而这一过程中,就需要采取数据挖掘技术对有关教学项目中的数据进行挖掘和处理,促进其应用成效的提升 3。5.结语综上所述,在大数据背景下,数据挖掘技术已经在各行各业中得到了广泛的应用,所以为了更好地满足应用的需要,我们必须切实加强对其特点的分析,并结合实际需要,切实注重数据挖掘技术的应用,才能促进其应用成效的提升。【参考文献】1李平荣.大数据时代的数据挖掘技术与应用J.重庆三峡学院学报,2014,03:45-47.2欧阳柏成.大数据时代的数据挖掘技术探究J.电脑知识与技术,2015,15:3-4+9.3孔志文.大数据时代的数据挖掘技术与应用J.电子技术与软件工程,2015,23:195.

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报