ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:369.17KB ,
资源ID:3202061      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3202061.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全等三角形解题方法.doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

全等三角形解题方法.doc

1、略说全等三角形解题方法 证明三角形全等的基本思路在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS”或再找第三组对应边用“SSS”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS”)或夹这个角的另一组对应边用“SAS”;若是判定两个直角三角形全等则优先考虑“HL ”。上述可归纳为:()()SAS用用用用 或证明三角形全等的方法、平移法构造全等三角形例如图所示,四边形 中, 平分 ,若 ,

2、 ,求证:ABCDABDCB。180BD分析:利用角平分线构造三角形,将 转移到 ,而 与 互补,ECE,从而证得 。主要方法是:“线、角进行转移”。CE180证明:在 上截取 ,AEA在 与 中,CDA (SAS)E , ,C ,DB , , E ,180CA .B、翻折法构造全等三角形D图EBA例如图所示,已知 中, , , 平分 ,求证:ABC90ACBDABC。ABCD证明: 平分 ,将 沿 翻折后,点 落在 上的点 ,则有 ,DEE在 与 中,EBD (SAS)CE , ,90ACDE 已知 中, , ,B90AB ,45 ,ED ,A 。BCD3、旋转法构造全等三角形例 3 如图

3、3 所示,已知点 、 分别在正方形 的边EFABCD与 上,并且 平分 ,求证: 。CDAEF分析:本题要证的 和 不在同一条直线上,因而要设法将它们“组合”到一起。可将 绕点 旋转 到 ,D90G则 , = ,从而将 转化为线段FBGEFB,再进一步证明 即可。证明略。EA4、延长法构造全等三角形例 4 如图 4 所示,在 中, ,C2,求证: 。ADD分析:证明一条线段等于另两条线段之和,常用的方法是延长一条短线段使其等于长线段,再证明延长部分与另一短线段相等即可;或者在长线段上截取一条线段等于短线段,再证明余下部分等于另一条短线段。本题可延长 至 ,使 ,构造ACEAB ,然后证明 ,就

4、可得 。ABDEDCD5、截取法构造全等三角形例 5 如图 5 所示,在 中,边 上的高为 ,又ABCA,求证: 。2BCDD图 2ECAD图 3CBAEFD图 4CBAED图 5CBAE分析:欲证明 ,可以在 上截取一线段等于 ,再证明另一线段等于 。如CDABCDBDAB果截取 (如图所示),则 可认为而 沿 翻折而来,从而只需证明EEA即可。证明略。A构造全等三角形解题的技巧全等三角形是初中几何三角形中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制

5、胜,现举几例供大家参考。友情提示:证明三角形全等的方法有 SAS、SSS、AAS、ASA、HL(Rt)。一、见角平分线试折叠,构造全等三角形例1 如图1,在ABC 中,AD 平分BAC,AB+BD=AC。求证:B:C=2:1。证法一:在线段 AC 上截取 AE=AB,连接 DE。在ABD 和AED 中,AE=AB,1=2,AD=AD,ABD AED。DE=DB,B=AED。AB+BD=AC,AE+DE=AC。又AE+CE=AC,DE=CE。C=EDC。AED=C+EDC,AED=2C,即B=2C。B:C=2:1。图1证法二:延长 AB 到 F,使 BF=BD,连接 DF。F=BDF。ABC=F

6、+BDF,ABC=2F。AB+BD=AC,AB+BF=AC,即 AF=AC。在ADF 和ADC 中,AF=AC,1=2,AD=AD,ADF ADC。F=C。又ABC=2F,ABC=2C,即ABC:C=2:1。图2点评:见到角平分线时,既可把ABD 沿 AD 折叠变成AED,也可把ACD 沿 AD 折叠变成AFD,利用全等三角形的性质,可使问题得以解决。练习:如图3,ABC 中,AN 平分BAC,CNAN 于点 N,M 为 BC 中点,若 AC=6,AB=10,求 MN 的长。图3提示:延长 CN 交于 AB 于点 D。则ACN ADN,AD=AC=6。又 AB=10,则 BD=4。可证 为BC

7、D 的中位线。 。点评:本题相当于把ACN 沿 AN 折叠成AND。二、见中点“倍长”线段,构造全等三角形例2 如图4,AD 为ABC 中 BC 上的中线,BF 分别交 AC、AD 于点 F、E,且 AF=EF,求证:BE=AC。图4证明:延长 AD 到 G,使 DG=AD,连接 BG。AD 为 BC 上的中线,BD=CD,在ACD 和GBD 中,AD=DG,ADC=BDG,BD=CD,ACD GBD。AC=BG,CAD=G。AF=EF,CAD=AEF。G=AEF=BEG,BE=BG,AC=BG,BE=AC。点评:见中线 AD,将其延长一倍,构造GBD,则ACD GBD。例3 如图5,两个全等

8、的含有 、 角的三角极 ADE 和 ABC 如图放置,E、A、C 三点在同一直线上,连接 BD,取 BD 中点 M,连接 ME、MC图5试判断EMC 的形状,并说明理由。解析:EMC 为等腰直角三角形。理由:分别延长 CM、ED,使其相交于点 N,可证BCM DNM。则 BC=DN,CM=NM。由于DEA ACB,则 DE=AC,AE=BC,DE+DN=AC+AE。即 EN=EC,则ENC 为等腰直角三角形。CM=NM,EMCN,则可知EMC 为等腰直角三角形。注:本题也可取 EC 的中点 N,连接 MN,利用梯形中位线定理来证明。亦可连接 AM,利用角的度数来证明。练习1:如图6,在平行四边

9、形 ABCD 中,E 为 AD 中点,连接 BE、CE,BEC= ,图6求证:(1)BE 平分ABC。(2)若 EC=4,且 ,求四边形 ABCE 的面积。提示:见图中所加辅助线,证ABE DFE。练习2:ABC 中,AC=5,中线 AD=7,则 AB 的取值范围为多少?注:延长 AD 到 E,使 DE=AD,连接 BE。则BDE CDA。BE=AC=5,DE=AD=7。在ABE 中,BE=5,AE=14。利用三角形三边关系可求线段 AB 的取值范围为:9AB19。三、构造全等三角形,证线段的和差关系例4 如图7,点 E、F 分别在正方形 ABCD 的边 BC、CD 上,且1=2。图7求证:B

10、E+DF=AE。证明:延长 CB 到 G,使 BG=DF,连接 AG。在ABG 和ADF 中,AB=AD,ABG=D= ,BG=DF,ABG ADF。G=AFD,4=1。1=2,4=2。ABCD,AFD=2+3=4+3=GAE。又G=AFD,G=GAE。AE=GE。EG=BE+BG=BE+DF,BE+DF=AE。从以上几例可以看出,全等三角形在证明中具有出奇制胜的作用。在解决有关角平分线、中点、线段的和差的问题时,通过添加辅助线构造全等三角形的办法,不仅能使问题迎刃而解,而且有助于学生创新思维的培养,提高学生的数学思维能力和分析能力。见到角平分线时,既可把ABD 沿 AD 折叠变成AED,也可把ACD 沿 AD 折叠变成AFD,利用全等三角形的性质,可使问题得以解决。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报