ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:1.02MB ,
资源ID:3158448      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3158448.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高数 映射与函数.ppt)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高数 映射与函数.ppt

1、第一章,分析基础,函数,极限,连续, 研究对象, 研究方法, 研究桥梁,函数与极限,第一章,二、映射,三、函数,一、集合,第一节,映射与函数,元素 a 属于集合 M , 记作,元素 a 不属于集合 M , 记作,一、 集合,1. 定义及表示法,定义 1.,具有某种特定性质的事物的总体称为集合.,组成集合的事物称为元素.,不含任何元素的集合称为空集 ,记作 .,注: M 为数集,表示 M 中排除 0 的集 ;,表示 M 中排除 0 与负数的集 .,简称集,简称元,表示法:,(1) 列举法:,按某种方式列出集合中的全体元素 .,例:,有限集合,自然数集,(2) 描述法:,x 所具有的特征,例: 整

2、数集合,或,有理数集,p 与 q 互质,实数集合,x 为有理数或无理数,开区间,闭区间,无限区间,点的 邻域,其中, a 称为邻域中心 , 称为邻域半径 .,半开区间,去心 邻域,左 邻域 :,右 邻域 :,是 B 的子集 , 或称 B 包含 A ,2. 集合之间的关系及运算,定义2 .,则称 A,若,且,则称 A 与 B 相等,例如,显然有下列关系 :,若,设有集合,记作,记作,必有,定义 3 . 给定两个集合 A, B,并集,交集,且,差集,且,定义下列运算:,余集,直积,特例:,为平面上的全体点集,或,二、 映射,某校学生的集合,学号的集合,某班学生的集合,某教室座位 的集合,引例1.,

3、引例2.,引例3.,(点集),(点集),向 y 轴投影,定义4.,设 X , Y 是两个非空集合,若存在一个对应规,则 f ,使得,有唯一确定的,与之对应,则称,f 为从 X 到 Y 的映射,记作,元素 y 称为元素 x 在映射 f 下的像,记作,元素 x 称为元素 y 在映射 f 下的原像 .,集合 X 称为映射 f 的定义域 ;,Y 的子集,称为 f 的 值域 .,注意:,1) 映射的三要素 定义域 , 对应规则, 值域.,2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一.,对映射,若, 则称 f 为满射;,若,有,则称 f 为单射;,若 f 既是满射又是单射,则称 f 为双

4、射 或一一映射.,引例2, 3,引例2,引例2,例1.,海伦公式,例2.,如图所示,对应阴影部分的面积,则在数集,自身之间定义了一种映射,(满射),例3.,如图所示,则有,(满射),(满射),X (数集 或点集 ),说明:,在不同数学分支中有不同的惯用,X ( ),Y (数集),f 称为X 上的泛函,X ( ),X,f 称为X 上的变换,R,f 称为定义在 X 上的函数,映射又称为算子.,名称. 例如,定义域,三、函数,1. 函数的概念,定义4. 设数集,则称映射,为定义在,D 上的函数 ,记为,称为值域,函数图形:,自变量,因变量,(对应规则),(值域),(定义域),例如, 反正弦主值,定义

5、域,对应规律的表示方法:,解析法,、图象法,、列表法,使表达式或实际问题有意义的自变量集合.,定义域,值域,又如, 绝对值函数,定义域,值 域,对无实际背景的函数, 书写时可以省略定义域.,对实际问题, 书写函数时必须写出定义域;,例4. 已知函数,解:,f (x) 的定义域,值域,2. 函数的几种特性,设函数,且有区间,(1) 有界性,使,称,使,称,说明: 还可定义有上界、有下界、无界 .,(2) 单调性,为有界函数.,在 I 上有界.,使,若对任意正数 M , 均存在,则称 f ( x ) 无界.,称 为有上界,称 为有下界,当,称,为 I 上的,称,为 I 上的,单调增函数 ;,单调减

6、函数 .,(见 P11 ),(3) 奇偶性,且有,若,则称 f (x) 为偶函数;,若,则称 f (x) 为奇函数.,说明: 若,在 x = 0 有定义 ,为奇函数时,则当,必有,例如,偶函数,双曲余弦,记,又如,奇函数,双曲正弦,记,再如,奇函数,双曲正切,记,说明: 给定,则,偶函数,奇函数,(4) 周期性,且,则称,为周期函数 ,若,称 l 为周期,( 一般指最小正周期 ).,周期为 ,周期为,注: 周期函数不一定存在最小正周期 .,例如, 常量函数,狄利克雷函数,x 为有理数,x 为无理数,3. 反函数与复合函数,(1) 反函数的概念及性质,若函数,为单射,则存在一新映射,习惯上,的反

7、函数记成,称此映射,为 f 的反函数 ., 其反函数,(减),(减) .,1) yf (x) 单调递增,且也单调递增,性质:,使,其中,2) 函数,与其反函数,的图形关于直线,对称 .,例如 ,对数函数,互为反函数 ,它们都单调递增,指数函数,(2) 复合函数,则,设有函数链,称为由, 确定的复合函数 ,u 称为中间变量.,注意: 构成复合函数的条件,不可少.,例如, 函数链 :,但可定义复合函数,时, 虽不能在自然域 R下构成复合函数,可定义复合函数,当改,两个以上函数也可构成复合函数.,例如,可定义复合函数:,约定: 为简单计, 书写复合函数时不一定写出其定义域,默认对应的函数链顺次满足构

8、成复合函数的条件.,4. 初等函数,(1) 基本初等函数,幂函数、,指数函数、,对数函数、,三角函数、,反三角函数,(2) 初等函数,由常数及基本初等函数,否则称为非初等函数 .,例如 ,并可用一个式子表示的函数 ,经过有限次四则运算和复合步,骤所构成 ,称为初等函数 .,可表为,故为初等函数.,又如 , 双曲函数与反双曲函数也是初等函数 .,( 自学, P17 P20 ),非初等函数举例:,符号函数,当 x 0,当 x = 0,当 x 0,取整函数,当,设函数,x 换为 f (x),例5.,解:,例6. 求,的反函数及其定义域.,解:,当,时,则,当,时,则,当,时,则,反函数,定义域为,内容小结,1. 集合及映射的概念,定义域 对应规律,3. 函数的特性,有界性, 单调性, 奇偶性, 周期性,4. 初等函数的结构,作业 P21 4 (5),(8) ,(10); 6; 8; 9; 13 ; 16; 17; 18,2. 函数的定义及函数的二要素,第二节,且,备用题,证明,证: 令,则,由,消去,得,时,其中,a, b, c 为常数,且,为奇函数 .,为奇函数 .,1. 设,2 . 设函数,的图形与,均对称, 求证,是周期函数.,证:,由,的对称性知,于是,故,是周期函数 ,周期为,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报