,一、最大值和最小值定理,定义:,例如,定理1(最大值和最小值定理) 在闭区间上连续的函数一定有最大值和最小值.,注意:1.若区间是开区间, 定理不一定成立;2.若区间内有间断点, 定理不一定成立.,补充:定理2(有界性定理) 在闭区间上连续的函数一定在该区间上有界.,证,二、零点定理与介值定理,定义:,几何解释:,推论 在闭区间上连续的函数必取得介于最大值 与最小值 之间的任何值.,例1,证,由零点定理,例2,证,由零点定理,三、小结,四个定理,有界性定理;最值定理;介值定理;根的存在性定理.,注意 1闭区间; 2连续函数 这两点不满足上述定理不一定成立,解题思路,1.直接法:先利用最值定理,再利用介值定理;,2.辅助函数法:先作辅助函数F(x),再利用零点定理;,思考题,下述命题是否正确?,思考题解答,不正确.,例函数,练 习 题,