1、电力系统负荷预测研究引言负荷预测是从已知的用电需求出发,考虑政治、经济、气候等相关因素,对未来的用电需求做出的预测。负荷预测包括两方面的含义:对未来需求量(功率)的预测和未来用电量(能量)的预测。电力需求量的预测决定发电、输电、配电系统新增容量的大小;电能预测决定发电设备的类型(如调峰机组、基荷机组等)。 负荷预测的目的就是提供负荷发展状况及水平,同时确定各供电区、各规划年供用电量、供用电最大负荷和规划地区总的负荷发展水平,确定各规划年用电负荷构成。1 负荷预测的方法及特点 1.1 单耗法 按照国家安排的产品产量、产值计划和用电单耗确定需电量。单耗法分“产品单耗法“和“产值单耗法“两种。采用“
2、单耗法“预测负荷前的关键是确定适当的产品单耗或产值单耗。从我国的实际情况来看,一般规律是产品单耗逐年上升,产值单耗逐年下降。单耗法的优点是:方法简单,对短期负荷预测效果较好。缺点是:需做大量细致的调研工作,比较笼统,很难反映现代经济、政治、气候等条件的影响。 1.2 趋势外推法 当电力负荷依时间变化呈现某种上升或下降的趋势,并且无明显的季节波动,又能找到一条合适的函数曲线反映这种变化趋势时,就可以用时间 t 为自变量,时序数值 y 为因变量,建立趋势模型 yf(t)。当有理由相信这种趋势能够延伸到未来时,赋予变量 t 所需要的值,可以得到相应时刻的时间序列未来值。这就是趋势外推法。 应用趋势外
3、推法有两个假设条件:假设负荷没有跳跃式变化;假定负荷的发展因素也决定负荷未来的发展,其条件是不变或变化不大。选择合适的趋势模型是应用趋势外推法的重要环节,图形识别法和差分法是选择趋势模型的两种基本方法。 外推法有线性趋势预测法、对数趋势预测法、二次曲线趋势预测法、指数曲线趋势预测法、生长曲线趋势预测法。趋势外推法的优点是:只需要历史数据、所需的数据量较少。缺点是:如果负荷出现变动,会引起较大的误差。 1.3 弹性系数法 弹性系数是电量平均增长率与国内生产总值之间的比值,根据国内生产总值的增长速度结合弹性系数得到规划期末的总用电量。弹性系数法是从宏观上确定电力发展同国民经济发展的相对速度,它是衡
4、量国民经济发展和用电需求的重要参数。该方法的优点是:方法简单,易于计算。缺点是:需做大量细致的调研工作。 1.4 回归分析法回归预测是根据负荷过去的历学分析的数学模型。用数理统计中的回归分析方法对变量的观测数据统计分析,从而实现对未来的负荷进行预测。回归模型有一元线性回归、多元线性回归、非线性回归等回归预测模型。其中,线性回归用于中期负荷预测。优点是:预测精度较高,适用于在中、短期预测使用。缺点是:规划水平年的工农业总产值很难详细统计;用回归分析法只能测算出综合用电负荷的发展水平,无法测算出各供电区的负荷发展水平,也就无法进行具体的电网建设规划史资料,建立可以进行数1.5 时间序列法 就是根据
5、负荷的历史资料,设法建立一个数学模型,用这个数学模型一方面来描述电力负荷这个随机变量变化过程的统计规律性;另一方面在该数学模型的基础上再确立负荷预测的数学表达式,对未来的负荷进行预测。时间序列法主要有自回归 AR(p)、滑动平均 MA(q)和自回归与滑动平均 ARMA(p,q)等。这些方法的优点是:所需历史数据少、工作量少。缺点是:没有考虑负荷变化的因素,只致力于数据的拟合,对规律性的处理不足,只适用于负荷变化比较均匀的短期预测的情况。 1.6 灰色模型法 灰色预测是一种对含有不确定因素的系统进行预测的方法。以灰色系统理论为基础的灰色预测技术,可在数据不多的情况下找出某个时期内起作用的规律,建
6、立负荷预测的模型。分为普通灰色系统模型和最优化灰色模型两种。 普通灰色预测模型是一种指数增长模型,当电力负荷严格按指数规律持续增长时,此法有预测精度高、所需样本数据少、计算简便、可检验等优点;缺点是对于具有波动性变化的电力负荷,其预测误差较大,不符合实际需要。而最优化灰色模型可以把有起伏的原始数据序列变换成规律性增强的成指数递增变化的序列,大大提高预测精度和灰色模型法的适用范围。灰色模型法适用于短期负荷预测。灰色预测的优点:要求负荷数据少、不考虑分布规律、不考虑变化趋势、运算方便、短期预测精度高、易于检验。缺点:一是当数据离散程度越大,即数据灰度越大,预测精度越差;二是不太适合于电力系统的长期
7、后推若干年的预测。 1.7 德尔菲法 德尔菲法是根据有专门知识的人的直接经验,对研究的问题进行判断、预测的一种方法,也称专家调查法。德尔菲法具有反馈性、匿名性和统计性的特点。德尔菲法的优点是:可以加快预测速度和节约预测费用;可以获得各种不同但有价值的观点和意见;适用于长期预测,在历史资料不足或不可预测因素较多尤为适用。缺点是:对于分地测则可能不可靠;专家的意见有时可能不完整或不切实际。1.8 专家系统法 专家系统预测法是对数据库里存放的过去几年甚至几十年的,每小时的负荷和天气数据进行分析,从而汇集有经验的负荷预测人员的知识,提取有关规则,按照一定的规则进行负荷预测。实践证明,精确的负荷预测不仅
8、需要高新技术的支撑,同时也需要融合人类自身的经验和智慧。因此,就会需要专家系统这样的技术。专家系统法,是对人类的不可量化的经验进行转化的一种较好的方法。但专家系统分析本身就是一个耗时的过程,并且某些复杂的因素(如天气因素),即使知道其对负荷的影响,但要准确定量地确定他们对负荷地区的影响也是很难的。专家系统预测法适用于中、长期负荷预测。此法的优点是:能汇集多个专家的知识和经验,最大限度地利用专家的能力;占有的资料、信息多,考虑的因素也比较全面,有利于得出较为正确的结论。缺点是:不具有自学习能力,受数据库里存放的知识总量的限制;对突发性事件和不断变化的条件适应性差。 1.9 神经网络法 神经网络(
9、ANN,Artificial Neural Network)预测技术,可以模仿人脑做智能化处理,对大量非结构性、非确定性规律具有自适应功能。ANN 应用于短期负荷预测比应用于中长期负荷预测更为适宜。因为,短期负荷变化可以认为是一个平稳随机过程。而长期负荷预测可能会因政治、经济等大的转折导致其模型的数学基础的破坏。优点是:可以模仿人脑的智能化处理;对大量非结构性、非精确性规律具有自适应功能;具有信息记忆、自主学习、知识推理和优化计算的特点。缺点是:初始值的确定无法利用已有的系统信息,易陷于局部极小的状态;神经网络的学习过程通常较慢,对突发事件的适应性差。1.10 优选组合预测法 优选组合有两层含
10、义:一是从几种预测方法得到的结果中选取适当的权重加权平均;二是指在几种预测方法中进行比较,选择拟和度最佳或标准偏差最小的预测模型进行预测。对于组合预测方法也必需注意到,组合预测是在单个预测模型不能完全正确地描述预测量的变化规律时发挥作用。一个能够完全反映实际发展规律的模型进行预测完全可能比用组合预测方法预测效果好。该方法的优点是:优选组合了多种单一预测模型的信息,考虑的影响信息也比较全面,因而能够有效地改善预测效果。缺点是:权重的确定比较困难;不可能将所有在未来起作用的因素全包含在模型中,在一定程度上限制了预测精度的提高。 1.11 小波分析预测技术小波分析是一种时域-频域分析法,它在时域和频
11、域上同时具有良好的局部化性质,并且能根据信号频率高低自动调节采样的疏密,它容易捕捉和分析微弱信号以及信号、图像的任意细小部分。其优点是:能对不同的频率成分采用逐渐精细的采样步长,从而可以聚集到信号的任意细节,尤其是对奇异信号很敏感,能很好的处理微弱或突变的信号,其目标是将一个信号的信息转化成小波系数,从而能够方便地加以处理、储存、传递、分析或被用于重建原始信号。这些优点决定了小波分析可以有效地应用于负荷预测问题的研究。2 结束语 负荷预测是电力系统调度、实时控制、运行计划和发展规划的前提,是一个电网调度部门和规划部门所必须具有的基本信息。提高负荷预测技术水平,有利于计划用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤、节油和降低发电成本,有利于制定合理的电源建设规划,有利于提高电力系统的经济效益和社会效益。因此,负荷预测已成为实现电力系统管理现代化的重要内容。参考文献牛东晓 曹树华 电力负荷预测技术及其应用刘晨晖 电力系统负荷预报理论及方法程浩忠 电力系统规划