ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:43.85KB ,
资源ID:2912476      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2912476.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(遗传算法源代码.doc)为本站会员(tangtianxu2)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

遗传算法源代码.doc

1、这是一个非常简单的遗传算法源代码,是由 Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian 变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也

2、没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu,目录 coe/evol 中的文件 prog.c 中获得。要求输入的文件应该命名为gadata.txt;系统产生的输出文件为galog.txt。输入的文件由几行组成:数目对应于变量数。且每一行提供次序对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。/*/* This is a simple genetic algorithm implementation where the */* evaluation function takes positive values only

3、 and the */* fitness of an individual is the same as the value of the */* objective function */*/#include #include #include /* Change any of these parameters to match your needs */#define POPSIZE 50 /* population size */#define MAXGENS 1000 /* max. number of generations */#define NVARS 3 /* no. of p

4、roblem variables */#define PXOVER 0.8 /* probability of crossover */#define PMUTATION 0.15 /* probability of mutation */#define TRUE 1#define FALSE 0int generation; /* current generation no. */int cur_best; /* best individual */FILE *galog; /* an output file */struct genotype /* genotype (GT), a mem

5、ber of the population */double geneNVARS; /* a string of variables */double fitness; /* GTs fitness */double upperNVARS; /* GTs variables upper bound */double lowerNVARS; /* GTs variables lower bound */double rfitness; /* relative fitness */double cfitness; /* cumulative fitness */;struct genotype p

6、opulationPOPSIZE+1; /* population */struct genotype newpopulationPOPSIZE+1; /* new population; */* replaces the */* old generation */* Declaration of procedures used by this genetic algorithm */void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void eli

7、tist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/*/* Initialization function: Initializes the values of genes */* within the variables bounds. It also initializes (to zero) */* all fitness values for each member

8、of the population. It */* reads upper and lower bounds of each variable from the */* input file gadata.txt. It randomly generates values */* between these bounds for each gene of each genotype in the */* population. The format of the input file gadata.txt is */* var1_lower_bound var1_upper bound */*

9、 var2_lower_bound var2_upper bound . */*/void initialize(void)FILE *infile;int i, j;double lbound, ubound;if (infile = fopen(“gadata.txt“,“r“)=NULL)fprintf(galog,“nCannot open input file!n“);exit(1);/* initialize variables within the bounds */for (i = 0; i populationPOPSIZE.fitness)cur_best = mem;po

10、pulationPOPSIZE.fitness = populationmem.fitness;/* once the best member in the population is found, copy the genes */for (i = 0; i populationi+1.fitness) if (populationi.fitness = best)best = populationi.fitness;best_mem = i;if (populationi+1.fitness = best)best = populationi+1.fitness;best_mem = i

11、+ 1;/* if best individual from the new population is better than */* the best individual from the previous population, then */* copy the best from the new population; else replace the */* worst individual from the current population with the */* best one from the previous generation */if (best = pop

12、ulationPOPSIZE.fitness)for (i = 0; i = populationj.cfitness elsepoint = (rand() % (NVARS - 1) + 1;for (i = 0; i #include #include /* Change any of these parameters to match your needs */#define POPSIZE 50 /* population size */#define MAXGENS 1000 /* max. number of generations */#define NVARS 3 /* no

13、. of problem variables */#define PXOVER 0.8 /* probability of crossover */#define PMUTATION 0.15 /* probability of mutation */#define TRUE 1#define FALSE 0int generation; /* current generation no. */int cur_best; /* best individual */FILE *galog; /* an output file */struct genotype /* genotype (GT),

14、 a member of the population */double geneNVARS; /* a string of variables */double fitness; /* GTs fitness */double upperNVARS; /* GTs variables upper bound */double lowerNVARS; /* GTs variables lower bound */double rfitness; /* relative fitness */double cfitness; /* cumulative fitness */;struct geno

15、type populationPOPSIZE+1; /* population */struct genotype newpopulationPOPSIZE+1; /* new population; */* replaces the */* old generation */* Declaration of procedures used by this genetic algorithm */void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);vo

16、id elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/*/* Initialization function: Initializes the values of genes */* within the variables bounds. It also initializes (to zero) */* all fitness values for each m

17、ember of the population. It */* reads upper and lower bounds of each variable from the */* input file gadata.txt. It randomly generates values */* between these bounds for each gene of each genotype in the */* population. The format of the input file gadata.txt is */* var1_lower_bound var1_upper bou

18、nd */* var2_lower_bound var2_upper bound . */*/void initialize(void)FILE *infile;int i, j;double lbound, ubound;if (infile = fopen(“gadata.txt“,“r“)=NULL)fprintf(galog,“nCannot open input file!n“);exit(1);/* initialize variables within the bounds */for (i = 0; i populationPOPSIZE.fitness)cur_best =

19、mem;populationPOPSIZE.fitness = populationmem.fitness;/* once the best member in the population is found, copy the genes */for (i = 0; i populationi+1.fitness) if (populationi.fitness = best)best = populationi.fitness;best_mem = i;if (populationi+1.fitness = best)best = populationi+1.fitness;best_me

20、m = i + 1;/* if best individual from the new population is better than */* the best individual from the previous population, then */* copy the best from the new population; else replace the */* worst individual from the current population with the */* best one from the previous generation */if (best

21、 = populationPOPSIZE.fitness)for (i = 0; i = populationj.cfitness elsepoint = (rand() % (NVARS - 1) + 1;for (i = 0; i point; i+)swap(/*/* Swap: A swap procedure that helps in swapping 2 variables */*/void swap(double *x, double *y)double temp;temp = *x;*x = *y;*y = temp;/*/* Mutation: Random uniform

22、 mutation. A variable selected for */* mutation is replaced by a random value between lower and */* upper bounds of this variable */*/void mutate(void)int i, j;double lbound, hbound;double x;for (i = 0; i POPSIZE; i+)for (j = 0; j NVARS; j+)x = rand()%1000/1000.0;if (x PMUTATION)/* find the bounds o

23、n the variable to be mutated */lbound = populationi.lowerj;hbound = populationi.upperj; populationi.genej = randval(lbound, hbound);/*/* Report function: Reports progress of the simulation. Data */* dumped into the output file are separated by commas */*/void report(void)int i;double best_val; /* be

24、st population fitness */double avg; /* avg population fitness */double stddev; /* std. deviation of population fitness */double sum_square; /* sum of square for std. calc */double square_sum; /* square of sum for std. calc */double sum; /* total population fitness */sum = 0.0;sum_square = 0.0;for (i

25、 = 0; i POPSIZE; i+)sum += populationi.fitness;sum_square += populationi.fitness * populationi.fitness;avg = sum/(double)POPSIZE;square_sum = avg * avg * POPSIZE;stddev = sqrt(sum_square - square_sum)/(POPSIZE - 1);best_val = populationPOPSIZE.fitness;fprintf(galog, “n%5d, %6.3f, %6.3f, %6.3f nn“, g

26、eneration, best_val, avg, stddev);/*/* Main function: Each generation involves selecting the best */* members, performing crossover if (galog = fopen(“galog.txt“,“w“)=NULL)exit(1);generation = 0;fprintf(galog, “n generation best average standard n“);fprintf(galog, “ number value fitness deviation n“

27、);initialize();evaluate();keep_the_best();while(generationMAXGENS)generation+;select();crossover();mutate();report();evaluate();elitist();fprintf(galog,“nn Simulation completedn“);fprintf(galog,“n Best member: n“);for (i = 0; i NVARS; i+)fprintf (galog,“n var(%d) = %3.3f“,i,populationPOPSIZE.genei);fprintf(galog,“nn Best fitness = %3.3f“,populationPOPSIZE.fitness);fclose(galog);printf(“Successn“);/*/

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报