ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:892KB ,
资源ID:2889688      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2889688.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(自动控制原理胡寿松第四版课后答案.doc)为本站会员(tangtianxu2)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

自动控制原理胡寿松第四版课后答案.doc

1、13解: 系统的工作原理为: 当流出增加时, 液位降低, 浮球降落, 控制器通过移动气动阀门 的 开度, 流入量增加, 液位开始上。 当流入量和流出量相等时达到平衡。 当流出量减小时, 系 统的变化过程则相反。希 望 液 位流出量高度 液位高度控制器 气动阀 水箱 流入量浮球图一14(1 ) 非线性系统(2 ) 非线性时变系统(3 ) 线性定常系统(4 ) 线性定常系统(5 ) 线性时变系统(6 ) 线性定常系统22-1 解:显然,弹簧力为 kx(t ) ,根据牛顿第二运动定律有:F (t ) kx(t) = m移项整理,得机械系统的微分方程为:d 2 x(t )dt 2m d x(t ) +

2、 kx(t ) = F (t )dt 2对上述方程中各项求拉氏变换得:ms 2 X (s) + kX (s) = F (s)所以,机械系统的传递函数为:G(s) = X (s) =F (s) 1ms 2 + k2-2 解一:由图易得:i1 (t )R1 = u1 (t ) u2 (t ) uc (t ) + i1 (t )R2 = u2 (t ) duc (t ) i1 (t ) = C dt由上述方程组可得无源网络的运动方程为:C ( R + R ) du2 (t ) u (t ) = CR du1 (t ) u (t ) 1 2 dt + 2 2 + 1dt对上述方程中各项求拉氏变换得:C

3、 (R1 + R2 )sU 2 (s) + U 2 (s) = CR2 sU1 (s) + U1 (s) 所以,无源网络的传递函数为:G(s) = U 2 (s) =U1 (s)1 + sCR21 + sC(R1 + R2 )解二(运算阻抗法或复阻抗法) :U (s) 1 + R2 1 + R Cs 2 = Cs = 2 U (s) R + 1 + R 1 + ( R + R )Cs1 1 21 Cs 22-5 解: 按照上述方程的顺序, 从输出量开始绘制系统的结构图, 其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C(s) =R(

4、s)G1 (s)G2 (s)G3 (s)G4 (s)1 + G2 (s)G3 (s)G6 (s) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)G7 (s) G8 (s)2-6 解: 将 G1 (s) 与 G1 (s) 组 成 的 并 联 环 节和 G1 (s) 与 G1 (s) 组 成 的 并 联 环 节 简化 , 它 们 的等效传递函数和简化结构图为:G12 (s) = G1 (s) + G2 (s)G34 (s) = G3 (s) G4 (s) 将 G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7 解:

5、C(s) =R(s)G12 (s)1 + G12 (s)G34 (s) =G1 (s) + G2 (s)1 + G1 (s) + G2 (s)G3 (s) G4 (s)由上图可列方程组:E (s)G1 (s) C (s)H 2 (s)G2 (s) = C (s)R(s) H1(s) C (s)G2 (s)= E (s)联列上述两个方程,消掉 E (s) ,得传递函数为:C(s) =R(s)G1 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)联列上述两个方程,消掉 C (s) ,得传递函数为:E(s) =R(s)1 + H 2 (s)G2 (s)1 + H1

6、(s)G1 (s) + H 2 (s)G2 (s)12 22 32-8 解:将反馈回路简化,其等效传递函数和简化图为:0.4G (s) = 2s + 1 =1 + 0.4 * 0.52s + 115s + 3将反馈回路简化,其等效传递函数和简化图为:1G (s) = s +0.3s + 1 = 5s + 321 + 0.4 5s + 4.5s + 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s + 3) o (s) = 5s 3 +4.5s 2 +5.9s +3.4 = 3.5s + 2.1i (s) 1 + 0.7

7、 * Ks(5s + 3) 5s 3 + (4.5 + 3.5K )s 2 + (5.9 + 2.1K )s + 3.425s 3-3 解:该二阶系统的最大超调量: p = e / 1 2 *100%当 p = 5% 时,可解上述方程得: = 0.69当 p = 5% 时,该二阶系统的过渡时间为:t s 3wn所以, 该二阶系统的无阻尼自振角频率 wn3-4 解: 3t s= 30.69 * 2 = 2.17由上图 可得系统的传递函数:10 * (1 + Ks)C (s) =R(s)s(s + 2)1 + 10 * (1 + Ks)s(s + 2)= 10 * (Ks + 1)s + 2 *

8、(1 + 5K )s + 10所以 wn = 10 , wn = 1 + 5K 若 = 0.5 时, K 0.116所 以 K 0.116 时, = 0.5 系 统单位阶跃响应的超调量和过渡过程时间分别为: p = e / 1 2 *100% = e0.5*3.14 / 10.52 *100% 16.3%ts = 3wn =30.5 * 1.910 加 入 (1 + Ks ) 相当于加入了一个比例微分环节, 将使系统的阻尼比增大, 可以有效地减小原系统的阶跃响应的超调量; 同时由于微分的作用, 使系统阶跃响应的速度 (即变w212p化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks

9、) 后,系统响应性能得到改善。3-5 解:由上图可得该控制系统的传递函数:C(s) = 10K1R(s)二阶系统的标准形式为:C (s)R(s)s 2 + (10 + 1)s + 10Kw 2= n s 2 + 2w s + w2n n所以n = 10K12wn = 10 + 1由 = e /1 2 *100%t p =wn 1 2 p = 9.5%t p = 0.5可得 = 0.6wn = 10K1 = 0.6wn = 7.85由 和2wn = 10 + 1 wn = 7.85可得:K1 = 6.16 = 0.84t s 3wn= 0.643-6 解: 列出 劳斯表为:因 为劳斯表首列系数符

10、号变号 2 次, 所以系统不稳定。 列出劳斯表 为:因 为劳斯表首列系数全大于零,所以系统稳定。 列出劳斯表 为:因为劳斯表首列系数符号变号 2 次 ,所以系统不稳定。3-7 解:系 统的闭环系统传递函数:K (s +1)C (s) =R(s)=s(2s +1)(Ts +1) =1 + K (s +1)s(2s +1)(Ts +1)K (s +1)K (s +1)s(2s +1)(Ts +1) + K (s +1)2Ts3 + (T + 2)s 2 + (K +1)s + K列出劳斯表为:s3 2T K +1s2 T + 2 Ks1 (K +1)(T + 2) 2KT T + 2s0 K2 3

11、 2 3 2 3T 0 , T + 2 0 , (K + 1)(T + 2) 2KT T + 2 0 , K 0T 0 K 0 , (K + 1)(T + 2) 2KT 0(K +1)(T + 2) 2KT = (T + 2) + KT + 2K 2KT= (T + 2) KT + 2K = (T + 2) K (T 2) 0K (T 2) (T + 2)3-9 解:由上图可得闭环系统传递函数:C (s) = KK2 K3R(s) (1 + KK K a)s2 KK K bs KK K代入已知数据,得二阶系统特征方程:(1 + 0.1K )s2 0.1Ks K = 0列出劳斯表为:s2 1 +

12、 0.1K Ks1 0.1Ks0 K可见,只要放大器 10 K 0 ,系统就是稳定的。3-12 解:系统的稳态误差为:ess = lim e(t ) = lim sE (s) = lim s R(s)t s 0 s 0 1 + G0 (s) G0 (s) = 10s(0.1s + 1)(0.5s + 1)系统的静态 位置误差系数:K = lim G (s) = lim 10 = ps 0 0 s 0 s(0.1s + 1)(0.5s + 1)系统的静态速度误差系数:K = lim sG (s) = lim 10s = 10vs 0 0 s 0 s(0.1s + 1)(0.5s + 1)系统的静

13、态加速度误差系数:K = lim s 2 G (s) = lim 10s 2= 0as 0 0 s 0 s(0.1s + 1)(0.5s + 1)当 r (t ) = 1(t ) 时, R(s) = 1sess = lim s * 1 = 0当 r (t ) = 4t 时, R(s) =s 0 10 s1 +s(0.1s + 1)(0.5s + 1)4s 2e = lim s * 4 = 0.4sss 0 s 2当 r (t ) = t 2 时, R(s) =1 + 10s(0.1s + 1)(0.5s + 1)2s 3ess = lims 0 1 +s * 2 = 10 s 3s(0.1s

14、+ 1)(0.5s + 1)当 r(t) = 1(t) + 4t + t 2 时, R(s) = 1 + 4 + 2s s 2 s 33-14 解:ess = 0 + 0.4 + = 由于单位斜坡输入下系统稳态误差为常值=2, 所以系统为 I 型系统设开环传递函数 G(s) = Ks(s2 + as + b) K = 0.5 b闭环传递函数 (s) = G(s) = K1 + G(s) s3 + as2 + bs + KQ s = 1 j 是系统闭环极点,因此s3 + as2 + bs + K = (s + c)(s2 + 2s + 2) = s3 + (2 + c)s2 + (2c + 2)

15、s + 2cK = 0.5bK = 2cb = 2c + 2 a = 2 + cK = 2a = 3b = 4c = 1所以 G(s) = 2 。s(s2 + 3s + 4)4-1j s j s k k = 0k k = 00 k = 0 k k k = 0 0(a) (b)j s j s 0 0(c) (d)4-2j s p 3 = 10 p 1 = 0 p 2 = 0p1 = 0, p2 = 0, p3 = 11. 实轴上的 根轨迹 ( , 1) (0, 0)1= 2. n m = 33 条根轨 迹趋向无穷远处的渐近线相角为 180(2q + 1) = 60,180a 3 (q = 0,1

16、)渐近线与实轴的交点为n m pi zii =1 j =1 0 0 1 1 a =3. 系统的特 征方程为n m = = 3 31+G(s) = 1 + K = 0s2 (s +1)即 K = s2 (s +1) = s3 s2dK = 3s2 2s = 0dss(3s + 2) = 0根 s1 = 0 (舍去 ) s2 = 0.6674. 令 s = j 代入特征方程 1+G(s) = 1 + K = 0s2 (s +1)s2 (s +1) + K =0( j )2 ( j +1) + K =0 2 ( j +1) + K =0K 2 j =0K 2 =0 = 0=0 (舍去)与虚轴没有交点

17、,即只有根轨迹上的起点,也即开环极点 p1,2 = 0 在虚轴上。25-1 G(s) = 50.25s +1 G( j ) = 50.25 j +1A( ) = 5 (0.25 )2 +1() = arctan(0.25)输入 r(t) = 5 cos(4t 30) = 5 sin(4t + 60) =4A(4) = 5(0.25 * 4)2 +1= 2.5 2 (4) = arctan(0.25 * 4) = 45系统的稳态输出为c(t ) = A(4) * 5 cos4t 30 + (4)= 2.5 2 * 5 cos(4t 30 45)= 17.68 cos(4t 75) = 17.68

18、 sin(4t +15)sin = cos(90 ) = cos( 90) = cos( + 270)5-3或者,c(t ) = A(4) * 5 sin4t + 60 + (4)= 2.5 2 * 5 sin(4t + 60 45)= 17.68 sin(4t +15)1 1(2 ) G(s) =(1 + s)(1 + 2s) G( j ) =(1 + j )(1 + j2 )A( ) = 1(1 + 2 )(1 + 4 2 )() = arctan arctan 2() = arctan arctan 2 = 90 arctan + arctan 2 = 90 = 1/(2) 2 = 1/

19、 2 A( ) = 1 =(1 +1 / 2)(1 + 4 *1/ 2)2 = 0.473与虚轴的交点为(0 ,-j0.47 )jY()0 = -j0.47 = 01X ()1(3 ) G(s) = 1s(1 + s)(1 + 2s)G( j ) = 1j (1 + j )(1 + j2 )A( ) =1(1 + 2 )(1 + 4 2 )() = 90 arctan arctan 2() = 90 arctan arctan 2 = 180 arctan + arctan 2 = 90 = 1/(2) 2 = 1/ 2 A( ) = 11/2 (1 +1/ 2)(1 + 4 *1/ 2) =

20、 2 = 0.673与实轴的交点为(-0.67 ,-j0 )-0.670 = 0.707 = 0jY () = X ()(4 ) G(s) = 1s2 (1 + s)(1 + 2s)G( j ) = 1( j )2 (1 + j )(1 + j2 )A( ) = 21(1 + 2 )(1 + 4 2 )( ) = 180 arctan arctan 2() = 180 arctan arctan 2 = 270 arctan + arctan 2 = 90 = 1/(2) 2 = 1/ 2 A( ) = 1 = 2 (1/ 2) (1 +1/ 2)(1 + 4 *1/ 2) 3 2 = 0.9

21、4与虚轴的交点为(0 ,j0 .94) = 0.707 = 0 0.940jY() = X ()25-4(2 ) 1 = 0.5 , 2 = 1 , k = 1 , = 0L ( ) ( d B )0 0.01-20dB0.1 0.5-20dB /dec1 10-40dB /dec-40dB(3 ) 1 = 0.5 , 2 = 1 , k = 1 , = 1L ( ) ( d B ) -20dB /dec20dB -40dB /dec0 0.01 0.1 0.5 1 10-20dB-40dB-60dB /dec(4 ) 1 = 0.5 , 2 = 1 , k = 1 , = 2L ( )(d

22、B )60dB-40dB /dec40dB20dB -60dB /dec0 0.01 0.1 0.5 1 10-20dB-40dB-80dB /dec5-6G(s) = 1s 1是一个非最小相位系统3G( j ) = 1 = 1 (1 j ) = 1 e j ( 180o +arctg )j 11 + 2 1 + 2G(s) = 1s +1是一个最小相位系统G( j ) = 1 = 1 (1 j ) = 1 e jarctgj +1 1 + 2 1 + 25-8(a) = 0 = -1 0 X ( ) = 0 +系统开环传递函数有一极点在 s 平 面的原点处 , 因此乃氏回线中半径为无穷小量

23、的半圆弧 对应的映射曲线是一个半径为无穷大的圆弧: : 0 0+ ; :9 0 0 90; () :9 0 0 9 0N=P-Z, Z=P-N=0-(-2)=2闭环系统有 2 个极点在右 半平面,所以闭环系统不稳定(b )jY ( ) = 0 = 0+ = -1 0 X ( ) 4系统开环传递函数有 2 个极点在 s 平面的原点处 , 因此乃氏回线中半径为无穷小量 的半圆弧对应的映射曲线是一个半径为无穷大的圆弧: : 0 0+ ; :9 0 0 90; () :1 80 0 180N=P-Z, Z=P-N=0-0=0闭环系统有 0 个极点在右 半平面,所以闭环系统稳定5-10K K 2.28K

24、(1 ) G(s)H (s) = =Ts +1()()12.28s +1=s + 2.281 = 2.280 90 ( )G s H s = K 1 = K 1 = 2.28K(2 ) ( ) ( ) ( )()s Ts +1 s 12.28s +1 s(s + 2.28)901 = 2.28180 ( )K s +11K 0.5 s +1 4K (s + 0.5)(3 ) G(s)H (s) = =s Ts +1 s 1=s (s + 2)2 2 2s +12L ( )( d B )-40dB /dec-20dB /decab 0 0.5 1 2 -40dB /dec520 lg 1 = a

25、 20 lg K + 20 lg 1 = 40 lg 1 20 lg K = 20 lg 10.520 lg(K )1 = 20 lg 20.5 0.5K = 1/ 2 = 0.50.5G(s)H (s) = 4K (s + 0.5) = 2(s + 0.5)s2 (s + 2) s2 (s + 2)90()() 1 = 0.5 2 = 2180 ( )5-11 = 0jY () = +0 = (-1,j0)X () = 0+G(s)H (s) = Ks(s +1)(3s +1) G( j )H ( j ) = Kj ( j +1)(3 j +1)( ) = 90 arctan arctan

26、3 = 180 arctan + arctan 3 = 90 = 1/(3) 2 = 1/ 3 A( ) = K1 /3 (1 +1 / 3)(1 + 9 *1/ 3) = 3 K = 14Kc = 4/3 = 1.336n n1 5 6-2 (1)6 2G(s) = = n s(s2 + 4s + 6) s(s2 + 2 s + 2 ) 2 = 6 = 6 =2.45, 2 =4 = 4 = 2 = 0.816n n n 2n 6K = 1 所以 , c = 1 20lgK = 0 2 / ( ) = 90 arctg c n 2 * 0.816 *1/ 2.45 = 90 arctgc 1

27、 2 / 2 1 1/ 2.452 c n = 90 arctg 2 * 0.816 *1 / 2.45 = 90 arctg 0.666 = 90 arctg 0.7995 1 1 / 2.452 0.833 = 90 38.64 = 128.64 = 180 + (c ) = 180 128.64 = 51.36L( )(dB)50403020100-10-20-30-400.01-20dB /dec0.1n1 2.4510-60dB /dec(2) 1 = 1, 2 =1/0.2=5 2 / ( ) = 90 arctg c n + arctg c arctg cc 1 2 / 2 c

28、n 1 2 = 128.64 + arctg 1 arctg 1 = 128.64 + 45 11.31 = 94.95 = 180 + (c ) = 180 94.95 = 85.051课后答案网L() (dB )50403020100-10-200.01-20dB /dec0.1n1 2.4520dB /decG c5 10-30-40-40dB /dec -60dB /dec-60dB /dec6-5 (1)G(s) = 10s(0.5s +1)(0.1s +1) = 1, 20 lg K =20lg10=20dB 1 = 1/ 0.5 = 2, 2 = 1 / 0.1 = 101 =

29、2 时, L(1 ) = 20 20(lg 2 lg1) = 20lg10 20 lg 2 = 20lg5 = 14dB2 = 10 时, L(2 ) = 14 40(lg10 lg 2) = 13.96dB所以 , 1 c 2L(1 ) = 40(lgc lg 2) = 40(lgc / 2) = 14dBc = 4.48 (c ) = 90 arctg 0.5c arctg 0.1c = 90 arctg 2.24 arctg 0.448= 90 65.94 24.13 = 180.07 = 180 + (c ) = 180 180.07 = 0.07L ( )(dB)5040302010

30、0-10-20-30-400.1-20dB /dec1 2-40dB /dec c 10-60dB /dec1002(2)G(s)Gc (s) = 10(0.33s +1)s(0.5s +1)(0.1s +1)(0.033s +1) = 1, 20 lg K =20lg10=20dB1 = 1 / 0.5 = 2, 2 = 1/ 0.33 = 3, 3 = 1 / 0.1 = 10, 4 = 1/ 0.033 = 302 = 3 时, L(1 ) L(2 ) = 40(lg2 lg 1 ) 14 L(2 ) = 40(lg 4.35 lg 2)L(2 ) = 7dBL(3 = 10) L(2

31、= 3) = 20(lg 3 lg 2 ) = 3.37dB所 以 2 c 2 3L(2 ) = 20(lgc 2 lg 2 ) = 20(lgc 2 / 3) = 7dBc 2 = 6.72 (c ) = 90 arctg 0.5c 2 arctg 0.1c 2 + arctg 0.33c 2 arctg 0.033c 2= 90 arctg 3.36 arctg 0.672 + arctg 2.22 arctg 0.222= 90 73.43 33.90+ 65.7512.52 = 144.1 2 = 180 + (c 2 ) = 180 144.1 = 35.9L( )(dB)504030 -20dB /dec20100-40dB /decc 220dB /dec G c10 -10-200.1 1 2 3 c1 30G cG100-30-40-20dB /dec -40dB /dec -60dB /dec-60dB /dec校正环节为相位超前校正, 校正后系统的相角裕量增加, 系统又不稳定变为稳定, 且有一定的稳定裕度, 降低系统响应的超调量; 剪切频率增加, 系统快速性提高; 但是高频段增益 提 高,系统抑制噪声能力下降。3

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报