ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:672KB ,
资源ID:2839509      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2839509.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(勾股定理综合难题 附答案(超好 打印版).doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

勾股定理综合难题 附答案(超好 打印版).doc

1、 CBA DEFCA BED练习题1 如图,圆柱的高为 10 cm,底面半径为 2 cm.,在下底面的 A 点处有一只蚂蚁,它想吃到上底面上与 A 点相对的 B 点处,需要爬行的最短路程是多少 ?2 如图,长方体的高为 3 cm,底面是边长为 2 cm 的正方形. 现有一小虫从顶点 A 出发,沿长方体侧面到达顶点 C 处,小虫走的路程最短为多少厘米? 答案 AB=5ACB3、一只蚂蚁从棱长为 1 的正方体纸箱的 B点沿纸箱爬到 D 点,那么它所行的最短路线的长是_。4、如图,小红用一张长方形纸片 ABCD 进行折纸,已知该纸片宽 AB 为 8cm, 长 BC为10cm当小红折叠时,顶点 D 落

2、在 BC 边上的点 F 处(折痕为 AE) 想一想,此时 EC 有多长?5如图,将一个边长分别为 4、8 的长方形纸片 ABCD 折叠,使 C 点与 A 点重合,则 EB 的长是( ) A3 B4 C D 5 56已知:如图,在ABC中,C=90 ,B=30,AB的垂直平分线交BC 于D,垂足为 E,D=4cm 求AC的长7、如图,有一个直角三角形纸片,两直角边 AC=6,BC=8 ,现将直角边 AC 沿直线 AD 折叠,使其落在斜边 AB 上,且与 AE 重合,则 CD 的长为 8、如图,在矩形 中, 将矩形 折叠,使ABCD,6ABCD点 B 与点 D 重合, 落在 处,若 ,则折 21:

3、 E痕 的长为 。EF9、如图,已知:点 E 是正方形 ABCD 的 BC 边上的点,现将 DCE 沿折痕 DE 向上翻折,使DC 落在对角线 DB 上,则 EBCE_BCAFEDCBABCBACDCBAD10、如图,AD 是ABC 的中线,ADC45 o,把ADC 沿 AD 对折,点 C 落在 C的位置,若BC2,则 BC_11如图 1,有一块直角三角形纸片,两直角边 AC6cm ,BC 8cm ,现将直角边 AC 沿直线AD 折叠,使它落在斜边 AB 上,且与 AE 重合,则 CD 等于( )A.2cm B.3 cm C.4 cm D.5 cm12、有一个直角三角形纸片,两直角边 AC=6

4、cm,BC=8cm,现将直角边 AC 沿CAB 的角平分线AD 折叠,使它落在斜边 AB 上,且与 AE 重合,你能求出 CD 的长吗? 13、如图,在ABC 中, B= ,AB=BC=6,把90ABC 进行折叠,使点 A 与点 D 重合,BD:DC=1:2,折痕为 EF,点 E 在 AB 上,点 F 在 AC 上,求 EC 的长。14已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm,将此长方形折叠, 使点 B 与点 D 重合,折痕为 EF,则ABE 的面积为( )A、6cm 2 B、8cm 2 C、10cm 2 D、12cm 215如图,将矩形 ABCD 沿 EF 折叠,使点 D

5、 与点 B 重合,已知 AB3,AD9,求 BE 的长16、如图,每个小方格的边长都为 1求图中格点四边形 ABCD 的面积。E题5图FBCBACDACDAC BE图 1D A E C D B ADB CEFABEFDC第 11 题图17、如图,已知:在 中, ,分别以此直角三角形的三边为直径画半圆,试说ABC90明图中阴影部分的面积与直角三角形的面积相等18如图 8,有一块塑料矩形模板 ABCD,长为 10cm,宽为 4cm,将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD 边上(不与 A、D 重合 ),在 AD 上适当移动三角板顶点 P:能否使你的三角板两直角边分别通过点 B

6、 与点 C?若能,请你求出这时 AP 的长;若不能,请说明理由再次移动三角板位置,使三角板顶点 P 在 AD 上移动,直角边 PH 始终通过点 B,另一直角边 PF 与 DC 的延长线交于点 Q,与 BC 交于点 E,能否使 CE2cm?若能,请你求出这时 AP 的长;若不能,请你说明理由21能.设 APx 米,由于 BP216+x 2,CP 216+(10x) 2,而在 RtPBC 中,有 BP2+ CP2BC 2,即 16+x2+16+(10x) 2100,所以 x2 10x+160,即(x5) 29,所以x53,所以 x8,x2,即 AP8 或 2,能.仿照可求得 AP4.19.如图AB

7、C 中, BCMANBCACB,5,1,90 则 MN= 4 20、直角三角形的面积为 ,斜边上的中线长为 ,则这个三角Sd形周长为( )(A) (B) 2d2S(C) (D)Sd解:设两直角边分别为 ,斜边为 ,则 , . 由勾股定理,得 .abc21Sab22abc所以 .224abd所以 .所以 .故选(C)dSabc2S21在 中, , 边上有 2006 个不同的点 ,ABC1BC1206,P记 ,则 =_.2206iiimP 1206m图 822如图所示,在 中, ,且 ,RtABC90,45ACBDE3B,求 的长.4CED.23、如图,在ABC 中, AB=AC=6,P 为 BC

8、 上任意一点,请用学过的知识试求 PCPB+PA2的值。24、如图在 RtABC 中, 3,4,90BCAC,在 RtABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。如图所示:要求:在两个备用图中分别画出两种与示例图不同的拼接方法,在图中标明拼接的直角三角形的三边长(请同学们先用铅笔画出草图,确定后再用 0.5mn 的黑色签字笔画出正确的图形)25如图,A、B 两个村子在河 CD 的同侧,A、B 两村到河的距离分别为AC=1km,BD=3km,CD=3km,现在河边 CD 上建一水厂向 A、B 两村输送自来水,铺设水管的费用为 20000 元/千米,请你在 CD 选择水

9、厂位置 O,使铺设水管的费用最省,并求出铺设水管的总费用 F。ABPC2.6m4m26已知:如图,ABC 中,C = 90,点 O 为ABC 的三条角平分线的交点,ODBC,OEAC,OFAB ,点 D、E 、F 分别是垂足,且 BC = 8cm,CA = 6cm,则点 O 到三边 AB,AC 和 BC 的距离分别等于 cm27 (8 分)如图,在ABC 中,AB=AC ,P 为 BC 上任意一点,请说明:AB2AP 2=PBPC。28、如图,已知: , , 于 P求证: 90CMAAB22BCAPPMBC A29 (本题满分 6 分)如图,一个牧童在小河的南 4km 的 A 处牧马,而他正位

10、于他的小屋 B 的西 8km 北 7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?30. (本题满分 6 分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高 4 米,宽 2.8 米,请问这辆送家具的卡车能否通过这个通道.COA BDEF第 26 题图ABPC第 28 题图AB小河东北牧童小屋31在一棵树的 10 米高 B 处有两只猴子,一只猴子爬下树走到离树 20 米处的池塘的 A 处;另一只爬到树顶 D 后直接跃到 A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?3

11、2在平静的湖面上,有一支红莲,高出水面 1 米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为 2 米,求这里的水深是多少米?33长为 4 m 的梯子搭在墙上与地面成 45角,作业时调整为 60角( 如图所示),则梯子的顶端沿墙面升高了_m34已知:如图,ABC 中,C90,D 为 AB 的中点,E、F 分别在 AC、BC 上,且DEDF求证:AE 2BF 2EF 235已知:如图,在正方形 ABCD 中,F 为 DC 的中点, E 为 CB 的四等分点且 CE ,求CB41证:AFFE 36已知ABC 中,a 2b 2c 210a 24b26c338,试判定ABC 的形状,

12、并说明你的理由37已知 a、 b、c 是ABC 的三边,且 a2c2b 2c2a 4b 4,试判断三角形的形状38如图,长方体的底面边长分别为 1cm 和 3cm,高为 6cm如果用一根细线从点 A 开始经过四个侧面缠绕一圈到达点 B,那么所用细线最短需要多长?如果从点 A 开始经过四个侧面缠绕 n圈到达点 B,那么所用细线最短需要多长?39、a、b 为任意正数,且 ab,求证:边长为 2ab、 a2b 2、a 2+b2 的三角形是直角三角形40. 三角形的三边长为 abcba2)(2,则这个三角形是( )(A) 等边三角形 (B) 钝角三角形 (C) 直角三角形 (D) 锐角三角形 .41.

13、(12 分)如图,某沿海开放城市 A 接到台风警报,在该市正南方向 100km 的 B 处有一台风中心,沿 BC 方向以 20km/h 的速度向 D 移动,已知城市 A 到 BC 的距离 AD=60km,那么台风中心经过多长时间从 B 点移到 D 点?如果在距台风中心 30km 的圆形区域内都将有受到台风的破坏的危险,正在 D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?42.(14 分)ABC 中,BC a,AC b,AB c,若C=90,如图(1) ,根据勾股定理,则22cba,若ABC 不是直角三角形,如图(2)和图(3) ,请你类比勾股定理,试猜想与 的关系,并证明你的结论

14、. 解:若ABC 是锐角三角形,则有 a2+b2c2 若ABC 是钝角三角形,C 为钝角,则有 a2+b20,x0 2ax0 a2+b2c2 当 ABC 是钝角三角形时,43 (10 分)如图,A 市气象站测得台风中心在 A 市正东方向 300 千米的 B 处,以 10 千米/7时的速度向北偏西 60的 BF 方向移动,距台风中心 200千米范围内是受台风影响的区域(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果 A 市受这次台风影响,那么受台风影响的时间有多长?ABCD第 24 题图44、将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的圆柱形水杯中,如图

15、所示,设筷子露在杯子外面的长度为 hcm,则 h 的取值范围是( ) Ah17cm B h8cm C15cmh16cm D 7cmh16cm45 如图,已知: , , 于 P. 求证:. 46【变式 2】已知:如图,B=D=90,A=60,AB=4,CD=2 。求:四边形 ABCD 的面积。47【变式】一辆装满货物的卡车,其外形高 2.5 米,宽 1.6 米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?(一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决 49、如图所示,ABC 是等腰直角三角形, AB=AC

16、,D 是斜边 BC 的中点,E 、F 分别是AB、AC 边上的点,且 DEDF,若 BE=12,CF=5求线段 EF 的长。50 如图,在等腰ABC 中,ACB=90 ,D、E 为斜边 AB 上的点,且DCE=45。求证:DE 2=AD2+BE2。ECA BDFECA BDAB CD51 如图,在A BC 中, AB=13,BC=14,A C=15,则 BC 边上的高 A D= 。52 如图,长方形 ABCD 中,AB=8 ,BC=4 ,将长方形沿 AC 折叠,点 D 落在点 E 处,则重叠部分AFC 的面积是 。EFDBCA53 在ABC 中,AB=15 ,AC=20,BC 边上的高 A D

17、=12,试求 BC 边的长.54 在A BC 中,D 是 BC 所在直线上一点,若 AB=l0,BD=6,AD=8,AC=17,求ABC 的面积。55. 若 ABC 三边 a、b、c 满足 a2b 2c 2338=10a+24b+26c,ABC 是直角三角形吗?为什么?56. 在ABC 中,BC=1997,AC=1998,AB 2=1997+1998,则ABC 是否为直角三角形?为什么?B CADB CAD注意 BC、AC、AB 的大小关系。 ABBCAC。AB2+BC2=1997+19972+1998=1997(1+1997 )+1998=19971998+1998=19982= AC2 。

18、57. 一只蚂蚁在一块长方形的一个顶点 A 处,一只苍蝇在这个长方形上和蜘蛛相对的顶点C1 处,如图,已知长方形长 6cm,宽 5 cm,高 3 cm。蜘蛛因急于捉到苍蝇,沿着长方形的表面向上爬,它要从 A 点爬到 C1 点,有很多路线,它们有长有短,蜘蛛究竟应该沿着怎样的路线爬上去,所走的距离最短?你能帮蜘蛛求出最短距离吗?58.木箱的长、宽、高分别为 40dm、30dm 和 50dm,有一 70dm 的木棒,能放进去吗?请说明理由。1259. 已知ABC 的三边 a、b、c,且 a+b=17,ab=60,c=13, ABC 是否是直角三角形?你能说明理由吗?60. 如图,E 是正方形 AB

19、CD 的边 CD 的中点,延长 AB 到 F,使 BF= 41AB,那么 FE 与 FA 相等吗?为什么?18ED CA B F61. 如图,A=60, B=D=90。若 BC=4,CD=6,求 AB 的长。9C1A19A DB C62如图,xoy=60 ,M 是xoy 内的一点,它到 ox 的距离 MA 为 2。它到 oy 的距离为11。求 OM 的长。20MxyO带答案版的用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。图(1)中 ,所以 。方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。图(2)中 ,所以 。方法三:将四个全等的直角三角形分别拼成如图

20、(3)1 和(3)2 所示的两个形状相同的正方形。CBA DEF在(3)1 中,甲的面积=(大正方形面积)(4 个直角三角形面积),在(3)2 中,乙和丙的面积和=(大正方形面积)(4 个直角三角形面积),所以,甲的面积=乙和丙的面积和,即: .方法四:如图(4)所示,将两个直角三角形拼成直角梯形。,所以 。练习题1 如图,圆柱的高为 10 cm,底面半径为 2 cm.,在下底面的 A 点处有一只蚂蚁,它想吃到上底面上与 A 点相对的 B 点处,需要爬行的最短路程是多少 ?2 如图,长方体的高为 3 cm,底面是边长为 2 cm 的正方形. 现有一小虫从顶点 A 出发,沿长方体侧面到达顶点 C

21、 处,小虫走的路程最短为多少厘米? 答案 AB=5ACB3、一只蚂蚁从棱长为 1 的正方体纸箱的 B点沿纸箱爬到 D 点,那么它所行的最短路线的长是_。4、如图,小红用一张长方形纸片 ABCD 进行折纸,已知该纸片宽 AB 为 8cm, 长 BC为10cm当小红折叠时,顶点 D 落在 BC 边上的点 F 处(折痕为 AE) 想一想,此时 EC 有多长?5如图,将一个边长分别为 4、8 的长方形纸片 ABCD 折叠,BCABCBACDCA BED使 C 点与 A 点重合,则 EB 的长是( ) A3 B4 C D 5 56已知:如图,在ABC中,C=90 ,B=30,AB的垂直平分线交BC 于D

22、,垂足为 E,D=4cm 求AC的长7、如图,有一个直角三角形纸片,两直角边 AC=6,BC=8 ,现将直角边 AC 沿直线 AD 折叠,使其落在斜边 AB 上,且与 AE 重合,则 CD 的长为 8、如图,在矩形 中, 将矩形 折叠,使ABCD,6ABCD点 B 与点 D 重合, 落在 处,若 ,则折 21: E痕 的长为 。EF9、如图,已知:点 E 是正方形 ABCD 的 BC 边上的点,现将 DCE 沿折痕 DE 向上翻折,使DC 落在对角线 DB 上,则 EBCE_10、如图,AD 是ABC 的中线,ADC45 o,把ADC 沿 AD 对折,点 C 落在 C的位置,若BC2,则 BC

23、_11如图 1,有一块直角三角形纸片,两直角边 AC6cm ,BC 8cm ,现将直角边 AC 沿直线AD 折叠,使它落在斜边 AB 上,且与 AE 重合,则 CD 等于( )A.2cm B.3 cm C.4 cm D.5 cm12、有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边 AC 沿CAB 的角平分线AD 折叠,使它落在斜边 AB 上,且与 AE 重合,你能求出 CD 的长吗? FEDCBAE题5图FBCBACDACDAC BE图 1D A E C D B CBAD13、如图,在ABC 中, B= ,AB=BC=6,把90ABC 进行折叠,使点 A 与点 D 重合

24、,BD:DC=1:2,折痕为 EF,点 E 在 AB 上,点 F 在 AC 上,求 EC 的长。14已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm,将此长方形折叠, 使点 B 与点 D 重合,折痕为 EF,则ABE 的面积为( )A、6cm 2 B、8cm 2 C、10cm 2 D、12cm 215如图,将矩形 ABCD 沿 EF 折叠,使点 D 与点 B 重合,已知 AB3,AD9,求 BE 的长16、如图,每个小方格的边长都为 1求图中格点四边形 ABCD 的面积。17、如图,已知:在 中, ,分别以此直角三角形的三边为直径画半圆,试说ABC90明图中阴影部分的面积与直角三角

25、形的面积相等18如图 8,有一块塑料矩形模板 ABCD,长为 10cm,宽为 4cm,将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD 边上(不与 A、D 重合 ),在 AD 上适当移动三角板顶点 P:能否使你的三角板两直角边分别通过点 B 与点 C?若能,请你求出这时 AP 的长;若不能,请说明理由再次移动三角板位置,使三角板顶点 P 在 AD 上移动,直角边 PH 始终通过点 B,另一直角边 PF 与 DC 的延长线交于点 Q,与 BC 交于点 E,能否使 CE2cm?若能,请你求出这时 AP 的长;若不能,请你说明理由21能.设 APx 米,由于 BP216+x 2,CP

26、216+(10x) 2,而在 RtPBC 中,有 BP2+ CP2BC 2,即 16+x2+16+(10x) 2100,所以 x2 10x+160,即(x5) 29,所以x53,所以 x8,x2,即 AP8 或 2,能.仿照可求得 AP4.图 8ADB CEFABEFDC第 11 题图19.如图ABC 中, BCMANBCACB,5,12,90 则 MN= 4 20、直角三角形的面积为 ,斜边上的中线长为 ,则这个三角Sd形周长为( )(A) (B) 2d2S(C) (D)Sd解:设两直角边分别为 ,斜边为 ,则 , . 由勾股定理,得 .abc21Sab22abc所以 .224abd所以 .

27、所以 .故选(C)dSabc2S21在 中, , 边上有 2006 个不同的点 ,ABC1BC1206,P记 ,则 =_.2206iiimP 1206m解:如图,作 于 ,因为 ,则 .ADBC1ABCD由勾股定理,得 .所以222,P2P所以 .221ABCA因此 .120606m22如图所示,在 中, ,且 ,Rt9,45BCABDE3B,求 的长.4CED解:如右图:因为 为等腰直角三角形,所以 .ABC45ABDC所以把 绕点 旋转到 ,则 .EFE所以 .连结 . 所以 为直角三角形.4,45FCFB由勾股定理,得 .所以 .2223D5因为 所以 . 5,AE 4AFDBEA所以

28、. 所以 .S523、如图,在ABC 中, AB=AC=6,P 为 BC 上任意一点,请用学过的知识试求 PCPB+PA2的值。24、如图在 RtABC 中, 3,4,90BCAC,在 RtABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。如图所示:要求:在两个备用图中分别画出两种与示例图不同的拼接方法,在图中标明拼接的直角三角形的三边长(请同学们先用铅笔画出草图,确定后再用 0.5mn 的黑色签字笔画出正确的图形)解:要在 RtABC 的外部接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定。要求在图中标明拼接的直角三角形的三边长,这需要用到勾

29、股定理知识。下图中的四种拼接方法供参考。ABPC1025如图,A、B 两个村子在河 CD 的同侧,A、B 两村到河的距离分别为AC=1km,BD=3km,CD=3km,现在河边 CD 上建一水厂向 A、B 两村输送自来水,铺设水管的费用为 20000 元/千米,请你在 CD 选择水厂位置 O,使铺设水管的费用最省,并求出铺设水管的总费用 F。26已知:如图,ABC 中,C = 90,点 O 为ABC 的三条角平分线的交点,ODBC,OEAC,OFAB ,点 D、E 、F 分别是垂足,且 BC = 8cm,CA = 6cm,则点 O 到三边 AB,AC 和 BC 的距离分别等于 cm27 (8

30、分)如图,在ABC 中,AB=AC ,P 为 BC 上任意一点,请说明:AB2AP 2=PBPC。28、如图,已知: , , 于 P求证: 90CMAAB22BCAPPMBC A29 (本题满分 6 分)如图,一个牧童在小河的南 4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处, 他想把他的马牵到小河边去饮水,然后回家.他要完 成这件事情所走的最短路程是多少?COA BDEF第 26 题图ABPC第 28 题图AB小河东北牧童小屋2.6m4m30. (本题满分 6 分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满

31、家具后,高 4 米,宽 2.8 米,请问这辆送家具的卡车能否通过这个通道.31在一棵树的 10 米高 B 处有两只猴子,一只猴子爬下树走到离树 20 米处的池塘的 A 处;另一只爬到树顶 D 后直接跃到 A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?32在平静的湖面上,有一支红莲,高出水面 1 米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为 2 米,求这里的水深是多少米?33长为 4 m 的梯子搭在墙上与地面成 45角,作业时调整为 60角( 如图所示),则梯子的顶端沿墙面升高了_m34已知:如图,ABC 中,C90,D 为 AB 的中点,E、F

32、 分别在 AC、BC 上,且DEDF求证:AE 2BF 2EF 235已知:如图,在正方形 ABCD 中,F 为 DC 的中点, E 为 CB 的四等分点且 CE ,求CB41证:AFFE 36已知ABC 中,a 2b 2c 210a 24b26c338,试判定ABC 的形状,并说明你的理由37已知 a、 b、c 是ABC 的三边,且 a2c2b 2c2a 4b 4,试判断三角形的形状38如图,长方体的底面边长分别为 1cm 和 3cm,高为 6cm如果用一根细线从点 A 开始经过四个侧面缠绕一圈到达点 B,那么所用细线最短需要多长?如果从点 A 开始经过四个侧面缠绕 n圈到达点 B,那么所用

33、细线最短需要多长?39、a、b 为任意正数,且 ab,求证:边长为 2ab、 a2b 2、a 2+b2 的三角形是直角三角形40. 三角形的三边长为 abcba2)(2,则这个三角形是( )(A) 等边三角形 (B) 钝角三角形 (C) 直角三角形 (D) 锐角三角形 .41.(12 分)如图,某沿海开放城市 A 接到台风警报,在该市正南方向 100km 的 B 处有一台风中心,沿 BC 方向以 20km/h 的速度向 D 移动,已知城市 A 到 BC 的距离 AD=60km,那么台风中心经过多长时间从 B 点移到 D 点?如果在距台风中心 30km 的圆形区域内都将有受到台风的破坏的危险,正

34、在 D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?42.(14 分)ABC 中,BC a,AC b,AB c,若C=90,如图(1) ,根据勾股定理,则22cba,若ABC 不是直角三角形,如图(2)和图(3) ,请你类比勾股定理,试猜想与 的关系,并证明你的结论. 解:若ABC 是锐角三角形,则有 a2+b2c2 若ABC 是钝角三角形,C 为钝角,则有 a2+b20,x0 2ax0 a2+b2c2 当 ABC 是钝角三角形时,43 (10 分)如图,A 市气象站测得台风中心在 A 市正东方向 300 千米的 B 处,以 10 千米/7时的速度向北偏西 60的 BF 方向移动,

35、距台风中心 200千米范围内是受台风影响的区域(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果 A 市受这次台风影响,那么受台风影响的时间有多长?44、将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为 hcm,则 h 的取值范围是( ) Ah17cm B h8cm C15cmh16cm D 7cmh16cm45 如图,已知: , , 于 P. 求证:. 思路点拨: 图中已有两个直角三角形,但是还没有以 BP 为边的直角三角形. 因此,我们考虑构造一个以 BP 为一边的直角三角形 . 所以连结 BM. 这样,

36、实际上就得到了 4 个直角三角形. 那么根据勾股定理,可证明这几条线段的平方之间的关系.解析:连结 BM,根据勾股定理,在 中,. 而在 中,则根据勾股定理有. 又 (已知) , . 在 中,根据勾股定理有 , . 46【变式 2】已知:如图,B=D=90, A=60,AB=4,CD=2 。求:四边形 ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结 AC,或延长 AB、DC 交于 F,或延长 AD、BC 交于点 E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。解析:延长 AD、BC 交于 E。A=60 ,B=90,E=30。AE=2AB=8,CE=2C

37、D=4,BE 2=AE2-AB2=82-42=48,BE= = 。 DE 2= CE2-CD2=42-22=12,DE= = 。S 四边形 ABCD=SABE -SCDE = ABBE- CDDE=47【变式】一辆装满货物的卡车,其外形高 2.5 米,宽 1.6 米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于 CH如图所示,点 D 在离厂门中线 0.8 米处,且 CD, 与地面交于H解:OC1 米 (大门宽度一半),OD0.8 米 (卡车宽度一半)在 RtOCD 中,由勾股定理得:CD .米,C

38、.(米).(米) 因此高度上有 0.4 米的余量,所以卡车能通过厂门48、如图,公路 MN 和公路 PQ 在点 P 处交汇,且QPN 30,点 A 处有一所中学,AP160m。假设拖拉机行驶时,周围 100m 以内会受到噪音的影响,那么拖拉机在公路 MN 上沿 PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为 18km/h,那么学校受影响的时间为多少秒? 思路点拨:(1)要判断拖拉机的噪音是否影响学校 A,实质上是看 A 到公路的距离是否小于 100m, 小于 100m 则受影响,大于 100m 则不受影响,故作垂线段 AB 并计算其长度。 (2)要求出学校

39、受影响的时间,实质是要求拖拉机对学校 A 的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。 解析:作 ABMN,垂足为 B。 在 RtABP 中,ABP90,APB30, AP160, AB AP80。 (在直角三角形中,30所对的直角边等于斜边的一半) 点 A 到直线 MN 的距离小于 100m,这所中学会受到噪声的影响。 如图,假设拖拉机在公路 MN 上沿 PN 方向行驶到点 C 处学校开始受到影响,那么AC100(m) ,由勾股定理得: BC2100 2-8023600, BC60。 同理,拖拉机行驶到点 D 处学校开始脱离影响,那么, AD100

40、(m) ,BD 60(m),CD120(m)。 拖拉机行驶的速度为 : 18km/h5m/s t120m5m/s24s。 答:拖拉机在公路 MN 上沿 PN 方向行驶时,学校会受到噪声影响,学校受影响的时间为24 秒。 (一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决49、如图所示,ABC 是等腰直角三角形, AB=AC,D 是斜边 BC 的中点,E 、F 分别是AB、AC 边上的点,且 DEDF,若 BE=12,CF=5求线段 EF 的长。思路点拨:现已知 BE、CF,要求 EF,但这三条线段不在同一三角形中,所以关键

41、是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接 AD解:连接 AD因为BAC=90 ,AB=AC 又因为 AD 为ABC 的中线,所以 AD=DC=DBADBC且BAD= C=45因为EDA+ADF=90 又因为CDF+ADF=90所以EDA=CDF 所以AEDCFD(ASA) 所以 AE=FC=5同理:AF=BE=12在 RtAEF 中,根据勾股定理得:,所以 EF=13。总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识。通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解。50 如图,在等腰AB

42、C 中,ACB=90 ,D、E 为斜边 AB 上的点,且DCE=45。求证:DE 2=AD2+BE2。ECA BDFECA BD分析:利用全等三角形的旋转变换,进行边角的全等变换,将边转移到一个三角形中,并构造直角三角形。51 如图,在A BC 中, AB=13,BC=14,A C=15,则 BC 边上的高 A D= 。 AB CD答案 12。52 如图,长方形 ABCD 中,AB=8 ,BC=4 ,将长方形沿 AC 折叠,点 D 落在点 E 处,则重叠部分AFC 的面积是 。EFDBCA设 EF=x,那么 AF=CF=8-x,AE2+EF2=AF2,所以 42+x2=(8-x)2,解得 x=

43、3,S=4*8/2-3*4/2=10答案:1053 在ABC 中,AB=15 ,AC=20,BC 边上的高 A D=12,试求 BC 边的长.答案 25 或 7 54 在A BC 中,D 是 BC 所在直线上一点,若 AB=l0,BD=6,AD=8,AC=17,求ABC 的面积。答案 84 或 3655. 若 ABC 三边 a、b、c 满足 a2b 2c 2338=10a+24b+26c,ABC 是直角三角形吗?为什么?56. 在ABC 中,BC=1997,AC=1998,AB 2=1997+1998,则ABC 是否为直角三角形?为什么?注意 BC、AC、AB 的大小关系。 ABBCAC。AB

44、2+BC2=1997+19972+1998=1997(1+1997 )+1998=19971998+1998=19982= AC2 。B CADC BADB CADC BAD57. 一只蚂蚁在一块长方形的一个顶点 A 处,一只苍蝇在这个长方形上和蜘蛛相对的顶点C1 处,如图,已知长方形长 6cm,宽 5 cm,高 3 cm。蜘蛛因急于捉到苍蝇,沿着长方形的表面向上爬,它要从 A 点爬到 C1 点,有很多路线,它们有长有短,蜘蛛究竟应该沿着怎样的路线爬上去,所走的距离最短?你能帮蜘蛛求出最短距离吗?58.木箱的长、宽、高分别为 40dm、30dm 和 50dm,有一 70dm 的木棒,能放进去吗

45、?请说明理由。1259. 已知ABC 的三边 a、b、c,且 a+b=17,ab=60,c=13, ABC 是否是直角三角形?你能说明理由吗?答案: 是直角三角形。 (平方差公式的灵活运用) abba2)(2= 22169017c。60. 如图,E 是正方形 ABCD 的边 CD 的中点,延长 AB 到 F,使 BF= 41AB,那么 FE 与 FA 相等吗?为什么?18ED CA B F61. 如图,A=60, B=D=90。若 BC=4,CD=6,求 AB 的长。19A DB C9C1A62如图,xoy=60 ,M 是xoy 内的一点,它到 ox 的距离 MA 为 2。它到 oy 的距离为11。求 OM 的长。20MxyO过点作,交的延长线于点,交的平行线于点。, 3,(在直角三角形中,角所对的边斜边的一半) , 。在t中, 37AFB=DE+FD=31673答案. 延长交 oy 于, 35136 在t中, 142BMO

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报