1、概率论与数理统计笔记(考研特别版)第 1 页 * 共 13 页概率论与数理统计笔记(考研版)一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科 统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等我们把随机现象的这种规律性称为统计规律性 应用例子 摸球游戏中谁是真正的赢家在街头巷尾常见一类
2、“摸球游戏” 游 戏是这样的:一袋中装有 16个大小、形状相同,光滑程度一致的玻璃球其中 8 个红色、8 个白色游戏者从中一次摸出 8 个,8 个球中当红白两种颜色出现以下比数时摸球者可得到相应的“奖励”或“ 处罚” :结果(比数) A (8:0)B (7:1)C (6:2)D (5:3)E (4:4)奖金(元) 10 1 0.5 0.2 -2概率论与数理统计笔记(考研特别版)第 2 页 * 共 13 页注:表中“-2”表示受罚 2 元解: 此游戏(实为赌博),从表面上看非常有吸引力,5 种可能出现的结果有 4 种可得奖且最高奖达 10 元而只有一种情况受罚罚金只是 2 元因此就吸引了许多人特
3、别是好奇的青少年参加结果却是受罚的多,何以如此呢?其实这就是概率知识的具体应用:现在是从 16 个球中任取 8 个所有可能的取法为 816C种即基本事件总数有限又因为是任意抽取保证了等可能性是典型的古典概型问题由古典概率计算公式很容易得到上述 5 种结果其对应的概率分别是:380741280946015483528617.CP(E) ;.D.C() ;.PB.2(A)16186假设进行了 1000 次摸球试验, 5 种情况平均出现的次数分别为:0、10、122、487、381 次,经营游戏者预期可得2381-(1001100.51220.2487) =593.6(元)这个例子的结论可能会使我们
4、大吃一惊,然而正是在这一惊之中获得了对古典概率更具体、更生动的知识. 戏院设座问题概率论与数理统计笔记(考研特别版)第 3 页 * 共 13 页乙两戏院在竞争 500 名观众,假设每个观众完全随意地选择一个戏院,且观 众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于 5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。设甲戏院需设 m 个座位,定义 否 则 个 观 众 选 甲 戏 院, 第,ixi01,i=1,2,500依题意, 5021 5,i,.)(P)(ii 若用 x 表示选择甲戏院的观众总数, 则 1ix,问题化为求 m 使95005
5、.)mx(P,.)mx(P即因为 E(xi)=D(xi)=0.5 ,由中心极限定理近似地 ),(N.x10250故 952.)m()x(P,查标准正态分布表知6510.,从而解得 269m,即每个戏院至少应该设多少 269 个座位。各章的重点难点第一章 事件与概率概率论与数理统计笔记(考研特别版)第 4 页 * 共 13 页 古典概率 全概率公式与贝叶斯公式(*) 独立试验序列第二章 离散型随机变量 离散随机变量的概率分布 分布函数 常用分布:超几何分布 H(n,M,N)、二项分布 B(n,p)、泊松分布 P() 随机变量的数学期望与方差的概念及性质第三章 连续型随机变量 连续随机变量的概率密
6、度、均匀分布 Ua,b、指数分布e()、正态分布 N(,2) 分布函数 二维随机变量的分布(联合分布) 边际分布 随机变量函数的数学期望 常用分布的数学期望与方差 相关矩与相关系数 随机变量的和的分布 切比雪夫不等式概率论与数理统计笔记(考研特别版)第 5 页 * 共 13 页第四章 大数定律与中心极限定理 大数定律(辛钦定理、伯努里定理) 中心极限定理(列维定理、德莫威尔-拉普拉斯定理)第五章 数理统计的基本知识 总体与样本的概念 常用统计量:样本均值、样本方差、修正样本方差 数理统计中的常用分布: 2 分布、t 分布、 F 分布(*) 正态总体的统计量分布:定理 1定理 4第六章 点估计
7、参数的矩估计: 极大似然法 无偏估计第七章 假设检验 正态总体均值的假设检验 正态总体标准差的假设检验 正态总体均值的区间估计 正态总体方差的区间估计(未知 )二、 学习方法指导本课程是研究随机现象的统计规律性的数学学科。因为研究对象,所以在学习方法上与分析数学、线性代数等其它课程有很大不同。在学习过程中,会遇到较多的、独特的概念和分析方法,初学者可能会概率论与数理统计笔记(考研特别版)第 6 页 * 共 13 页感到很不习惯,入门会有一定困难,但是只要肯于钻研并掌握较好的学习方法,多数学生不仅能达到考核的基本要求,而且还会产生较大的学习兴趣。这是因为概率论与数理统计与社会生活实际的联系十分紧
8、密,应用特别广泛,因而容易激发人们的兴趣。下面,结合本课程的特点,介绍某些行之有效的学习方法供学生参考。1学习概率论的基本概念时,首先要注意这些概念的统计背景。概率论部分的基本概念比较多,特别从第二章“随机变量及其分布” 开始,似乎 “高难动 作” 一个接着一个来。如果对基本概不能很好理解,势必影响自学的信心。 实际上,概率 论的 许多基本概念来源于统计实践,因此弄清其统计背景乃是入门的向导。例如,概率来源于频率,它是大量独立重复试验时频率的稳定值。因此,频率是概率的先导。而概率又是频率的抽象和发展。进而可理解概率的某些基本特性也是相应的频率特性的高度概括和抽象。又如,连续随机变量的概率密度的
9、统计背景是统计直方图;随机变量的分布函数实质上是一种“累计概率” ,它来源于 统计中的经验分布函数;而随机变量的期望概念则是样本均值的抽象,在提供了频率分布的前提下,样本均值实际上是一种加权平均值(“ 权 ”就是频数),而离散随机变量的期望恰恰是这种加权平均值概念的提升和推广,即将频率提升为概率,将有限推广到无限等等。2重视概念的甄别,即弄清某些容易混淆的概念之间的区别。概率论与数理统计笔记(考研特别版)第 7 页 * 共 13 页在概率论中存在许多容易混淆的概念,如果不能认真区分,仔细加以甄别,就不能正确理解这些重要概念,在应用时就会产生各种各样的错误。 互不相容事件与相互独立事件是最容易混
10、淆的一对概念“互不相容”是指两个事件不能同 时发生。而“相互独立 ”则是指一个事件 发生与否对另一事件 发生的概率没有影响。 随机变量的独立性与不相关性是两个既有区别又有联系的概念。两个随机变量 相互独立 不相关 条件概率 P(A|B)与乘积概率 P(AB) 也是容易混淆的一对概念条件概率是已知某事件发生条件下,另一事件发生的概率,而乘积概率中所涉及的事件都没有“已经发生” 的假定。两者的关系为P(AB)=P(B)P(A|B)3善于识别一些重要的概率模型并能正确进行计算是提高分析和解决概率实际问题能力的关键。在概率论中有许多经长期实践概括出的重要概率模型(简称“概型” ),学生必须了解其背景、
11、特点和适用范围,要熟记计算公式,以便能正确应用。例如:(1)古典概型:一类具有有限个“等可能” 发 生的基本事件的概率模型。 概率论与数理统计笔记(考研特别版)第 8 页 * 共 13 页(2)完备事件组模型:若干个两两互不相容的事件在一次试验中有且仅有一个发生的一类概率模型。它主要用于某些复杂事件的计算全概率公式,以及某些条件概率的计算贝叶斯公式。(3)贝努利概型与二项分布模型:贝努利概型是关于独立重复试验序列的一类重要的概率模型,其特点是各个重复试验是独立进行的,且每次试验中仅有两个对立的结果:事件 A 发生或不发生, 则在 n 次独立重复试验中,事件 A 恰好发生 m 次的概率为mnmn
12、npCP)1()(,其中 p=P(A).(4)泊松分布:物理上存在一种质点流,称为泊松流,它是由源源不断的随机出现的许多质点构成的一种随机质点流。例如,电话交换台所接到的呼唤形成一呼唤流,到某商店去购物的顾客形成一顾客流,经过某 块天空的流星形成流星流,放射性物质不断放出的质点形成质点流等等。泊松流的主要特征之一就是在任意两个不相交的时间区间内各自出现的质点个数是相互独立的。加上另一些特征,即可导出泊松流的概率模型.(5)正态分布最重要的概率模型:根据中心极限定理的意义可知:无数微小的,又相互独立作用的随机因素,如果它们同分布,则它们累加起来的总效应必定服从正态分布。这是正态分布应用最为广泛的
13、根本原因。例如人体的身高、体重,测量的误差等都服从正态分布。(6)均匀分布“等可能”取值的连续化模型:如果连续随机变量仅 在某有限区间a, b内取 值,且具有概率密度概率论与数理统计笔记(考研特别版)第 9 页 * 共 13 页其 它 ,01)(bxabx则称 服从区间a, b上的均匀分布。除以上 6 种常见的概率模型外,还有指数分布,随机变量的函数等模型,不再一列举,可参看教材有关内容。4对于某些难度较大的特殊算法要在理解的基础上进行“典例复算”学生普遍反映本课程自学较难,除概念抽象外,恐怕一些特殊的计算方法也会带来不少学习上的困难。要突破这一点,最好的方法是将有关的典型例题读完后,合上书,
14、认真复算一遍,边算边加深理解。例如,关于已知随机变量的分布列或概率密度,求分布函数的方法。从分布函数的定义)(xPF出发,可得出关于离散随机变量和连续随机变量分布函数的计算公式,分别为 xixiii pPF)(和 xdt)()(困难在于这两个公式的具体应用。5学习数理统计部分,最重要的是要领会各种统计方法内在的统计思想,其次是要熟练掌握操作步骤。概率论与数理统计笔记(考研特别版)第 10 页 * 共 13 页例如,极大似然估计法的主要统计思想是:如果在一次试验中,某个样本 x1, x2,xn 一旦出现,就有理由认为该样本出现的概率最大。具体操作时,只要利用总体的已知分布(其中包含待估的本知参数
15、)构造样本的联合分布,即似然函数,再应用微积分的极值原理找出最大值点,即得极大似然估计量。又如,区间估计实际上是以一定的把握(置信概率)去估计未知参数所落入的范围(置信区间)。区间估计方法最主要的统计思想是:设法构造一个与待估未知参数有关的统计量,利用它的抽样分布,在给定的置信概率下确定临界值,再作适当的概率恒等变形即可获得置信区间。 简言之,就是以统计量及其抽样分布为武器,达到用样本推断总体的目的。数理统计既然是用部分去推断总体,特别是区间估计和假设检验都只是根据一次抽样所得的样本值去下结论,这就不可能不犯错误,于是就产生了区间估计的可靠性(置信概率)和假设检验的两类错误问题。 这就是 说,
16、数理统计工作者对实际问题下结论时往往不是简单地回答“是”或“非” ,而是带有一定的犯错误 的概率。这样做,既体现了实事求是的科学精神,又鼓励人们通过不断实践,经过多次试验逐步获得较为准确和可靠的结论。学生在学习数理统计这部分内容时应充分领会和把握统计方法的这一重要特色。6在重视基本概念、基本理论和基本方法学习的前提下,也要注意概率统计中专用语言和符号的规范使用。概率论与数理统计笔记(考研特别版)第 11 页 * 共 13 页本课程的教学实践和考试的情况反映出学生的学习效果不容乐观。许多学生对基本知识和基本技能不能正确理解和掌握。例如,求得的概率是负值或大于 1,方差小于 0,相关系数大于 1
17、等错误大有人在;对于“至少发 生 1 个” 、“至多发生 2 个”等概率 论专用语言不理解,从而不能正确表达事件;计算概率时,对有关事件 A,”B,C 等或有关随机变量 X,Y 等的含义不事先设定;正态分布计算中对一般的正态变量不作“标准化 变换” ;关于事件或随机 变量独立性的判定或 证明更是错误百出,答非所问。特别是数理统计部分,许多考生或者放弃,或者胡乱解答一通。这些现象充分说明,学生一定要重视基本概念、基本原理和基本方法的真正理解和掌握。7必须做相当多的习题。凡数学课程,只是看书而不做习题是很难真正掌握好的。通常是,看书时明白了,当要做习题时又无从下手。做习题能帮助我们复习提高,加深对
18、概念的理解,对算法的掌握。三、注意事项概率论与数理统计是研究随机现象数量规律的学科,解决问题方法思路与其它数学学科大不相同,概念难以理解,规律不易掌握,习题处理困难。为提高学习效果,保证学习质量,学习概率论与数理统计应注概率论与数理统计笔记(考研特别版)第 12 页 * 共 13 页意以下几方面的问题: 1、善于归纳, 寻找共性。本 课程内容较为散乱,每个问题都有不同背景,系统归结,找出共性,有利于整体掌握所学内容。例如:古典概型所求概率是随机事件在样本空间所占比例,是随机事件样本点数与样本点总数之比,几何概型虽然对象不同(样本点无穷多个,不可数),所求概率是两个几何体度量之比,但也是随机事件
19、在样本空间所占比例,两者本质思路都是一样的,搞清这一点,对全面掌握知识很有帮助;2、学科交叉,提高认识。本 课程虽然内容独特,但我们将概率视为函数之后,就可以用数学分析方法进行研究,广泛应用极限、导数、积分之后,不仅处理问题严格科学,更提高了对问题的理解认识;3、联系实际,培养 兴趣。本 课程产生的背景,是迫切解决当时实际问题的需要。当今社会环境中,政治、 军事、 经济等大量问题都可以用概率方法研究解决,如利用概率研究彩票、保险、天气预报等。解决这些问题很有意义,也很有趣,兴趣做动力,也是提高学习效率的一个重要因素;4、加强练习,掌握技巧。独立完成作 业是学生学好本课程的一项重要的、必不可少的工作。通过对课后习题的练习,逐步加深对课程中各种概念理解,熟悉各种基本解题方法,达到基本掌握本课程主要内容的目的。5、网络课堂,加强自学。网络教学是一种新型教学手段,我们在精品课程网页上设有指定的教材、电子教案、作业习题、参考文献等内容。概率论与数理统计笔记(考研特别版)第 13 页 * 共 13 页为巩固加强所学知识,网页上配有习题解答和在线辅导,师生、生生之间可用留言板展开适时和非适时交流探讨。最后可根据网页提供的模拟试题进行自测。 结合课堂教学和网上自学,认真对待,多想多练,必将极大提高学习效率。