ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:1.26MB ,
资源ID:2728973      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2728973.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(06材料力学 外语版.doc)为本站会员(dreamzhangning)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

06材料力学 外语版.doc

1、00 习题要求:1 将题目转化为 Microsoft Word 文档;2 解题过程用 Microsoft Word 文档,公式用公式编辑器,只交电子文档作业;3 期末考试前必须作对所有所给题目,否则不能参加期末考试,请于指定时间前交作业。第一题(2010 年 3 月 5 日前交该题作业)星期五1.21 Determine the smallest allowable cross-sectional areas of members BD, BE, and CE of the truss shown. The working stresses are 20 000 psi in tension

2、and 12 000 psi in compression. (A reduced stress in compression is specified to reduce the danger of buckling.)SolutionThe free-body diagram of homogeneous BC in Fig.(b). The equilibrium equation are, P=24(kips)=24000(lb)024361,0AyFPMThe free-body diagram of truss in Fig.(c). The equilibrium equatio

3、n are, 0368)16481648(316,0 BDAyE PPMPBD=8.944(kips) (Compression) PCE=24(kips) (Tension )0,CEAyB016437.,0 BDByyFPBE=-11.32(kN) (Compression) The normal stress of a member CE, DE and DF is (Compression)./(1208942inlbAlBDBDABD=0.745(in.2)(Compression)./(1032inlblPBEBEABE=0.943(in.2)(Tension )(04psilbP

4、CEECABE=1.2(in.2)1 .37 Compute the maximum force P that can be applied to the foot pedal. The l/4-in.-diameter pin at B is in single shear, and its working shear stress is 4000 psi. The cable attached at C has a diameter of 1/8 in. and a working normal stress of 20 000 psi.SolutionThe free-body diag

5、ram of bracket in Fig.(b). The equilibrium equation are, P=0.05788T (a)01sin26,0TPMB, PBx=-0.9848TcoFxx, PBy=0.2315Tsi, ByyAccording to the normal stresses formula, we haveT=245.4(lb)./(20.1542inlbinTAccording to the shear stresses formula, we have)./(40.2531984. 222 inlbidPAVByx T=194.1(lb)Accordin

6、g to formula (a), we getP=0.05788T=0.05788194.1=11.2(lb)第二题(2010 年 3 月 10 日前交该题作业)星期三2.702.37 An initially rectangular element of a material is deformed into the shape shown in the figure. Find x, y, and for the element.SolutionAccording to the definition of the axial strain, we have:04.2.019x15y 57

7、7.6.2.69(g) The bars AB, AC and AD are pinned together as shown in the figure. Calculate the axial force in the strut caused by the 10-kip load. For each steel bar. A = 0.3 in.2 and E = 29 x 106 psi. For the aluminum bar, A = 0.6 in.2 and E = 10 x 106 psi.SolutionEquilibrium: )(102cos40cos 3lbPPADCA

8、B 0ininCompatibilityABxy ssD2i20coyACHookes law: )/.(102.)(60)./(10626 lbinPinilbPACAC /8.3./294cos2 liiil BBA )/.(10)(0)./(1626 lbininilbADD we getABxACPP.84s40cos2D6iwe obtainAABAC3.916.3.17and )(102cos40cos 3lbPPDCB 0ininAA ADABP52.ADADACPP436.9521.06.32.17AD71.2C5.0. BB B89.AAB4So we obtainPAC=3

9、.53103 (lb)PAB=2.56103 (lb)PAD=4.80103 (lb)第三题(2010 年 3 月 15 日前交该题作业)星期一3.27 The compound shaft, composed of steel, aluminum, and bronze segments, carries the two torques shown in the figure. If TC = 250 lb.ft, determine the maximum shear stress developed in each material. The moduli of rigidity for

10、 steel, aluminum, and bronze are 12 x 106 psi, 4 x 106 psi, and 6 x 106 psi, respectively.SolutionAccording to the angle of twist formula, we have032)50(32)750(32 444 BrorDAlulBCDStetBAC dGTLdTLdGTL16)(16444 0.5(T B-750)+0.0625(T B-500)+0.5TB=0TB=382.4(lb.ft)According to the torsion formula, we have

11、)(2461)7504.382(6max psiSte .893Alu)(70.max siSte第四题(2010 年 3 月 19 日前交该题作业的剪力图、弯矩图部分)星期五第四题(2010 年 3 月 24 日前交该题作业的应力部分)星期三5.35 Determine the maximum tensile and compressive bending stresses in the beam shown.Solution:1) FBD(support reactions at A and B)2) Shear-Moment Diagrams3) Section ModulusMomen

12、t of inertiaI100 106 (mm)44) Maximum Bending StressAt the top of section C it is in compression16.25 (Mpa)46103.5.2mNIcMtopc At the bottom of section C it is in tension25 (Mpa)462IbotCtAt the top of section B it is in tension 15.6 (Mpa)46103.2mNIctopc At the bottom of section C it is in compression2

13、4 (Mpa)462.IMbotBtSo we get16.25 (Mpa)46103.5.2mNIctopCc 24 (Mpa)2.botBt第五题(2010 年 3 月 29 日前交该题作业)星期一5.68 For the beam shown, compute the shear stress at 1.0-in. vertical intervals on the cross section that carries the maximum shear force. Plot the results.Solution:1)FBD(support reactions at B and C

14、)2)Shear-Moment Diagrams3)Section ModulusMoment of inertiaI97.0in. 4The first moment of this area at 1.0-in. vertical intervals on the cross section12 in. 33112inQor 31255.4in=15.125 in34)Maximum shear Stress=350.8psipsiinibIQV8.350.1.97204maxa Shear Stress at 1.0-in. vertical intervals on the cross

15、 section=278.4psisiiiI .2.0.5431ax第六题(2010 年 4 月 12 日前交该题作业)星期一6.72 Compute the value of EI at the overhanging end A of the beam, by superposition.According to deflection formulas for beams, we knowEImNEImNLaEIwBC ).(60)42()4(2/0)(24 22ImAM.13IBB3)( IIBMA ).(2133)(.802EINEINawA ).(8)2(/40834mAwBMBC.

16、1737.44 The beam ABCD has four equally spaced supports. Find all the support reactions.SolutionAccording to slope formulas for beams, we know)()3(2)(24320 LLEIwB 36)(R 0)()3(622LEIRC)2()3(2)(2430IC )()3(6 3LLLEB 0)(2)(2IRC18740CBRw02L30RCBAccording to the equilibrium equation and according to symmet

17、ry,A、D supports have the same magnitude,)3(0LwRDCBDARwe have, 30LwCB 520LwRDA第七题(2010 年 4 月 16 日前交该题作业)星期五8.27 The cross sections of the members of the pin-jointed structure are 200-mm square. Find the maximum compressive stress in member BDE.SolutionThe maximum compressive stress in member BDE)(95.

18、682.01582.0196max MPaC第八题(2010 年 4 月 26 日前交该题作业)星期一8.49 For the state of stress shown, determine the principal stresses and the principal directions. Show the results on a sketch of an element aligned with the principal directions.Solution The principal stresses221 xyyxyx 2864which yields)(.10ksi)(.

19、2ksiThe principal directions6.15842tanyxThe two solution areand 9.572 01.289.57and 0061Determine the angles (associated with ) and the angles 2(associated with )22sinco xyyxyx )9(8)9s(64)(.8ksiand2sinco2 xyyxyxy)9(8)9s(64)(.10ksiTherefore we conclude the angles =61.0o (associated with ) and the 11an

20、gles (associated with )292第九题(2010 年 4 月 30 日前交该题作业)星期五8.108 A shaft carries the loads shown in the figure. If the working shear stress is w = 80 MPa, determine the smallest allowable diameter of the shaft. Neglect the weights of the pulleys and the shaft as well as the stress due to the transverse

21、shear force. Solution According the support, we know there is the largest bending moment occurs at C, the largest torque occurs in segment BC. Show in the figure.At C section, we haveMmax=2.5kN0.6m=1.5(kN.m)TBC=0.3(kN.m)Therefore, the stress at the bottom of the section are363maxax )(.105.2mdNdS3363

22、 )(16TJrBCBCDraw the Mohrs circleAppend(2)Figure (a) shows a reinforced concrete beam, where the cross-sectional area of the steel reinforcement is 19600 mm2. Using n = Est/Eco= 8 and the working stresses of 12 MPa for concrete and 140 MPa for steel, determine the largest bending moment that the bea

23、m can carry.SolutionSuppose the tensile stress is zero and compressive stress is not zero in the concrete, the first moment of the transformed cross section about the neutral axis is zero. According to the maximum compressive stress in concrete and tensile stress in steel, the neutral axis is(b)0)(2

24、)()(21211 hdnAhbhst)167(98098092655402 hh137.)(mThe moment of inertia about the neutral axis(c)21312131 )()(hnAhbhI st26709829049)(1).3.5(mI49(64The moment)(210.329maxMPaco)(978kNM)(1406.34)217(89MPaMst 0mkNThe beam carries a uniformly distributed load of intensity wo on a simply supported span 24 f

25、t long. Determine the largest allowable value of wo2081lM2)3(4.6/90mkN.tw第十题(2010 年 5 月 7 日前交该题作业)星期五AppendThe 9-m-long concrete column is built in at its base and stayed by two beam at the top. Determine the largest axial load that can be carried. Use E =25 GPa and =20 MPa for concrete.ypSolutionDe

26、termine the moment of inertia of the cross-sectional area about the z-axis and y-axis 44123 )(832.)(084.12)40(6 mmIz 19.09.iyThe slenderness ratio of a 1600mm x 2400mm rectangleThe least radius of gyration with z-axis)(48.0)(.261843mAIrzz 57.09mCzThe least radius of gyration with y-axis)(213.0)(4.61

27、8AIryy 5923.07CyThe slenderness ratio157202ypCEFor the slenderness ratio is less than , so that the concrete zCy, Ccolumn is of intermediate length. These equations yield the factor of safety75.18.3157.3835 CzzzN629.3yyand the working stress)(07.15.172.321 MPaNCypzzw 32.69ypyyThe largest allowable axial load thus becomes)(438)(451)(1052.4.6107. tkNAPzw 53993326ySo we obtain axial load P)(48tz

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报