ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:185.50KB ,
资源ID:2622614      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2622614.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖北省武汉六中高三(国际部)数学复习课件21__有理函数的定义 .ppt)为本站会员(微传9988)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

湖北省武汉六中高三(国际部)数学复习课件21__有理函数的定义 .ppt

1、Unit 2: Rational Functions,Lesson 1: Reciprocal of a Linear Function,What is a Rational Function?,Any function of the form:Where f(x) and g(x) are polynomial functionsBecause the denominator can never be zero, rational functions have properties that polynomial functions do not,What is the Reciprocal

2、 of a Linear Function?,We are going to start by looking at the simplest rational functions:This is the general form for the reciprocal of a linear function Reciprocal means you put “one over” or, more simply, you “flip it”,Example 1,(a) Use your TI-83 or the program “Graph” to graph the function(b)

3、Describe the end behaviour (c) What happens when x gets close to ?,Example 1: Solution,(a),Example 1: Solution,(b) As x gets large in both the positive and negative directions, the function gets close to but does not touch the y-axis. Therefore,As x +, y 0As x , y 0,Example 1: Solution,Start on the

4、left of the graph and move towards x = : the y-values get large and negative,Start on the right of the graph and move towards x = : the y-values get large and positive,Denoted by: x - , y -,Denoted by: x + , y +,Approach x = from the right,Approach x = from the left,(c),The function never crosses th

5、is vertical line,Example 1: Notes,A line that a function gets close to but does not touch is called an asymptoteThe y-values got close to but did not touch the y-axis (a horizontal line) horizontal asymptote is the line y = 0 The reciprocal of a linear function will always have a horizontal asymptot

6、e at y = 0The x-values got close to but did not touch the line x = (a vertical line) vertical asymptote is the line x = Occurs because the denominator cannot be zero The reciprocal of a linear function will always have one vertical asymptote,Example 2,(a) Use your TI-83 or the program “Graph” to gra

7、ph the function(b) Label the horizontal and vertical asymptotes,Example 2: Solution,The line x = 1 (vertical asymptote),The line y = 0 (horizontal asymptote),Example 2: Notes,In this example the value of k (the number in front of x) is negative:As a result, branch on the left of the vertical asympto

8、te is above the x-axis and the branch on the right branch is below itWhen k is positive the branch on the left is below the x-axis and the branch on the right branch is above it,Example 3,Consider the function(a) Determine the equations of the asymptotes (b) State the domain and range,Example 3: Sol

9、ution,The horizontal asymptote is the line y = 0 See “Example 1: Notes”The vertical asymptote occurs because the denominator cannot be zero. We need to find the value of x that makes the denominator zeroTherefore, the vertical asymptote is the line x = 2,Example 3: Solution,(b) The domain tells us w

10、hat values of x the function can be evaluated at. The only value of x we cant have is 2. Therefore, The range tells us what values of y the function can have. The only value of y we will never get is 0. Therefore,Example 3: Notes,Our vertical asymptote was the line x = 2 and our domain was The verti

11、cal asymptote gives you the domainOur horizontal asymptote was the line y = 0 and our range was The horizontal asymptote gives you the range,Example 4,Determine the x- and y-intercepts of,Example 4: Solution,The x-intercept is the value of x when y = 0:There is no value of x that makes this true. Th

12、ere is no x-interceptThe y-intercept is the value of y when x = 0:The y-intercept is,Summary,The reciprocal of a linear function has the formThe vertical asymptote is found by setting the denominator equal to zero and solving for x The denominator CANNOT be zero The domain is all values of x except

13、this oneThe horizontal asymptote is the x-axis (the line y = 0) The range is all values of y except zeroThese functions have two branches one on the left of the vertical asymptote and one on the right k 0: left branch is below the x-axis, the right is above K 0: left branch is above the x-axis, the right is below,Practice Problems,P. 153-154 #2, 3, 5, 7-9 Note: For #7 dont bother with a sketch. Just calculate the y-intercept and state the domain, range and asymptotes.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报