ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:109.50KB ,
资源ID:2617269      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2617269.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字图像处理基础阅读笔记.doc)为本站会员(dzzj200808)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数字图像处理基础阅读笔记.doc

1、数字图像处理基础一、物理图像的数字化理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。空间坐标(x , y)的数字化称为图像采样,而幅值数字化称为灰度级量化。1.图像采样图像采样是对图像空间坐标的离散化,它决定了图像的空间分辨率。采样可以这样理解:用一个网格把待处理的图像覆盖,然后每一个小格上模拟图像的各点亮度取平均值,作为该小方格中点的值。对一副图像采样时,若每行(横向)像素为 M 个,每列(纵向)像素为 N 个,则图像大小为 M*N 个像素,f(x,y)表示点(x,y)处的灰度值,则 F(x,y)

2、构成一个 M*N 实数矩阵。 )1,()1,()0,1( , )0()()(),( NMffMf fffyxF 2.灰度量化把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。量化的方法包括:分层量化、均匀量化和非均匀量化。分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗到最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。当图像的采样点数一定时,采用不同量化级数的图像质量不一样。量化级数越多,图像质量越好;量化级数越少,图像质量越差。量化级数最小的极端情况是二值图像,图像

3、出现假轮廓。二、数字图像的表示二维图像进行均匀采样并进行灰度量化后,就可以得到一幅离散化成 M*N 样本的数字图像,该图像是一个整数阵列,因而用矩阵来描述数字图像是最直观、最简便的了。三、数字图像处理的主要研究内容图像变换、图像增强、图像分割、图像恢复与重建、图像编码与压缩。四、图像类型索引图像、灰度图像、二值图像、rgb 图像、多帧图像序列。1.二值图像又称为黑白图像,是指图像的每个像素只能是黑或白,没有中间的过渡。二值图像的像素值为 0 或 1。2.灰度图像灰度图像是指每个像素由一个量化的灰度值来描述的图像。它不包含彩色信息。若灰度图像的像素是 uint8 或 uint16 型,则它们的整

4、数值范围分别是0,255和0,65535。若图像是 double 型,则像素的取值就是双精度浮点型。3.rgb 图像Rgb 图像又称为真彩色图像,它利用 rgb 三个分量合成来表示一个像素的颜色,rgb 分别对应三原色的红、绿、蓝。因此,一幅尺寸为 M*N 的 rgb 图像需要一个三维矩阵来存储,三维矩阵的尺寸为 M*N*3。如果要读取图像中(100,50)处的像素值,需要查看三元数据(100,50,1:3) 。真彩色图像可用双精度存储,亮度值范围是0,1;比较符合习惯的存储方法是用无符号 8 位整数存储,亮度值范围为0,255。4.索引图像索引图像采用两个矩阵来表示一幅图像,分别是图像数据矩

5、阵和调色板矩阵。调色板是一个有 3 列和若干行的色彩映像矩阵,矩阵每行代表一种颜色,3 列分贝代表红、绿、蓝色强度的双精度数。5.多帧图像序列6.图像类型转换五、颜色空间除了 rgb 颜色模型外,还有一些颜色模型,这些颜色模型又可称为颜色空间或色度空间。常见的色度空间有 RGB、HSV、HIS 等。1.RGB 模型RGB(red,green,blue)颜色空间最常用于显示器系统。彩色阴极射线管、彩色光栅图形的显示器都使用 RGB 数值来驱动 RGB 电子枪发射电子,分别激发荧光屏上的 RGB三种颜色的荧光粉发出不同亮度的光线,并通过相加混合产生各种颜色。RGB 色彩空间称为与设备相关的色彩空间

6、。RGB 颜色空间是最常见的色度空间,在计算机图形学、数字图像处理中都应用广泛。该模型基于笛卡尔坐标系统,成正方形,三个轴分别对应于 RGB 三个分量。如图所示。bluecyanMegenta whiteBlack greenred yellow2.HSV 模型HSV(hue,saturation,value)颜色空间的模型对应于圆柱坐标系中的一个圆锥形子集,圆锥的顶面对应于 v=1.3.hsi 颜色空间HSI 颜色空间从人的视觉系统出发,用色调(hue ) 、色饱和度(saturation 或chroma)和亮度(Intensity 或 brightness)来描述色彩。注意:色度空间只是同

7、一物理量的不同表示法,因而它们之间存在着转换关系。Rgb 和 hsi 的相互转换 )()(21arcos)(3),min(360BGRBGRIRSfiH六、图像质量的客观评价图像质量的客观评价是指采用某个或某些定量参数和指标来描述图像的质量。它在图像压缩、图像水印等应用中有重要的价值,是衡量不同算法性能优劣的一个重要指标。1.峰值信噪比最常见的图像评价准则是峰值信噪比(PSNR)和均方误差( MSE)。假设 f(x,y)是原始图像,f (x,y)是处理以后的图像, M 和 N 分别是图像的列数和行数,即图像的分辨率为 M*N,则 PSNR 和 MSE 的定义为: MxNyyxffSEMSESE

8、fPR12 2102minax10),(),( 5loglog其中 fmax 和 fmin 分别是灰度图像的最大值和最小值,通常取值为 255 和 0。可以看出,PSNR 包含了 MSE,二者的评价结果是一致的。从 PSNR 的计算公式可以看出,它对图像内部所有的像素都是平等对待的。事实上,人眼视觉系统对不同位置的像素会有不同的视觉效果。因此,在常用的 PSNR 基础上,出现了很多考虑 HVS(human visual system)的影响的加权峰值信噪比(WPSNR)。七、图像的正交变换图像的正交变换是为达到某种目的将原始图像从空间域变换映射到另一个域上,使得图像某些特征得以突出,以便于进行

9、图像的处理和识别。一般经过正交变换后的图像,大部分能量都分布于低频谱段,图像的边缘信息反映在高频率成分上。这对图像的压缩、传输都比较有利,使得运算次数减少,节省时间。在图像处理技术中,离散图像的正交变换被广泛应用于图像的特征提取、增强、复原、分割和描述,以及图像的编码和压缩中。这种变换一般是线性的,其基本运算是严格可逆的,并满足一定的正交条件。下面主要介绍几种常见的正交变换包括傅里叶变换(Fourier)、离散余弦变换、小波变换、Radon 变换的原理及其在数字图像处理中的应用。1.傅立叶变换(FFT)由高等数学的傅立叶级数可知,如果一个周期为 T 的函数在 -T/2,T/2上满足狄利克雷条件

10、,则该函数在-T/2, T/2可以展开成傅立叶级数。10 )sinco(2)(nT wtbtatf其复指数形式为 jnwtnTectf)(其中: 2)(1Tjnwtndf可见,傅立叶级数清楚地表明了一个周期信号由哪些频率分量组成及其所占的比重,从而有利于对周期信号进行分析和处理。根据周期信号的这个特点,可以把傅立叶级数的概念推广到非周期信号上,这就引出了傅立叶变换。(1)连续函数的傅立叶变换(2)离散函数的傅立叶变换(DFT)(3)傅立叶变换的物理意义从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像

11、从频率域转换到空间域。也就是说,傅立叶变换的物理意义就是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶变换的逆变换是将图像的频率分布函数变换为灰度分布函数。图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。例如,大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域,它在图像中是一片灰度变化剧烈的区域,对应的频率值较高。因此,对一幅图像进行傅立叶变换后,就将图像中的高频信息和低频信息在频率域中分开了,方便对图像进行各种处理,如图像平滑、边缘提取等操作。由于数字图像都是空间坐标(x,y)的二维离散函数,对图像都是进行二维傅立叶

12、变换。(4)二维离散傅立叶变换的若干性质离散傅立叶变换建立了函数在空间域与频率域之间的转换关系,在数字图像处理中,经常要利用这种转换关系及其转换规则。周期性和共轭对称性。若离散的傅立叶变换和它的反变换周期为 N,则有),(),(),(),( vNuFvuNuFv 傅立叶变换存在共轭对称性,有 ,*这种周期性和共轭对称性对图像的频谱分析和显示带来很大益处。可分离性。一个二维傅立叶变换可由连续两次一维傅立叶变换来实现。 .1,20;1,20)(),( .,;,)(1),(1)/(201)/(2NyMxevuFyf yxfNvuuvvuxjMxy NvyMuxj 式 中 ,式 中 , 上式可分解成如

13、下两式: 10 1,0/2exp),(),( ,/,MxNy NvujvFvuyjf 旋转不变性。引入极坐标表示。则 f(x,y)和其傅立叶变换 F(u,v)分别可表示为sincosincovury。),(),(Ff和二维傅立叶变换的旋转不变性可表示为: ),(),(00Frf上式表明,如果 f(x,y)在空间域旋转 角度,则相应的傅立叶变换 F(u,v)在频域上也0旋转同一角度 。02.离散余弦变换(Discrete Cosine Transform,DCT)离散余弦变换是数字图像处理中一种重要处理手段,是主要的正交变换之一,被广泛应用于图像的压缩编码算法中。已有各种成熟的压缩标准 JPEG

14、、MPEG、H.26X 以及HDTV 等,都无一例外的采用基于 DCT/IDCT 的压缩编码。离散余弦变换是傅立叶变换的一种特殊情况。在傅立叶级数展开式中,被展开的函数是实偶函数时,其傅立叶级数中只包含余弦项,故称为余弦变换。因为 DCT 的变换核是为实数的余弦函数,因而 DCT 的计算速度比 DFT 快得多。DCT 将图像信号从空间域变换到 DCT 变换域,保持原始信号的熵和能量不变,却使得 DCT 变换域系数之间的相关性减弱,然后再对 DCT 变换域系数进行量化和编码,以达到压缩的目的。DCT 计算复杂性适中,又具有可分离特性,还有快速算法,所以被广泛用在图像数据压缩编码的算法中。(1)3

15、.离散小波变换 DWT所谓小波分析,从数学角度看,它属于调和分析的范畴。它可以视为一种近似计算的方法,用于把某一函数在特定的空间内按照小波基展开。从工程的角度看,小波分析可以视为继 Fourier 分析后的一种有效的时频分析方法。小波变换作为一种新的多分辨率分析方法,可同时进行时域和频域分析,具有时频局部化和多分辨率特性。小波变换分为连续小波变换和离散小波变换。对于数字图像,需要使用离散小波变换。4.Hough 变换霍夫(Hough)变换是利用图像的全局特性而直接检测目标轮廓,将图像的边缘像素连接起来的常用方法。在预先知道区域形状的条件下,利用 Hough 变换可以方便地得到边界曲线而将不连续

16、的边缘像素点连接起来。5.Randon 变换八、图像的特征提取数字图像分析与理解是图像工程的高级阶段,它研究的是使用计算机分析和识别周围物体的视觉图像,从而得出结论性的判断。让计算机系统识别人类视觉系统能够认识的图像,必须分析图像的特征,并将其特征用数学的方法描述,从而使计算机具有识别图像的能力,即图像的模式识别。图像的特征提取与选择是图像分析与识别的关键因素之一。特征选取是指从众多特征中选取最有效的特征。图像特征是指图像的原始特性或属性。其中,有些是视觉直接感受到的自然特征,区域的亮度、边缘的轮廓、纹理或色彩等;有些是需要通过变换或测量才能得到的人为特征,例如变换频谱、直方图等。常用的特征可

17、以分为灰度(密度、颜色)特征、纹理特征和几何形状特征等。其中,灰度特征和纹理特征属于内部特征,需要借助分割图像从原始图像上测量。几何形状特征属于外部特征,可以从分割图像上测量。1.纹理特征提取纹理特征描述图像或图像区域所对应景物的表明性质。由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在图像模式识别的模式匹配时,此类区域性的特征具有一定的优势,可以避免由于局部的偏差造成匹配失败。作为一种统计特征,纹理特征具有旋转不变性,并对噪声有较强的抵抗能力。但纹理特征有其缺点:当图像的分辨率变化时,所计算出来的纹理可能会有较大偏差;由于有可能受到光照、反射情况的影响,从 2D 图像中反映出来的纹理不一定是 3D 物体表面真实的纹理。常用的纹理特征提取与匹配方法有以下几种:统计法、模型法、几何法。(1)直方图统计特征(2)图像的自相关函数(3)灰度共生矩阵2.颜色特征提取3.形状特征提取4.结构特征提取

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报