ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:28KB ,
资源ID:2587881      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2587881.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(在实践中对小学数学思想方法进行渗透的一点体会.doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

在实践中对小学数学思想方法进行渗透的一点体会.doc

1、在实践中对小学数学思想方法进行渗透的一点体会抚顺市新华朝鲜族小学 尹春花数学领域中的知识博大精深,学之不尽。小学生们所学到的只是数学基础知识中的最基本的东西。因此, 学校教学要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。 所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时

2、所采用的方式、途径和手段,也可以说是解决数学问题的策略。在小学数学教学中,所采用的思想方法有很多,例如对应思想方法、猜想验证思想方法、转化思想方法、数形结合思想方法等等。下面就以自己的教学实践为例谈谈在实际教学中渗透这些数学思想方法的一些粗浅做法。一、数形结合的思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。在小学一年级中,刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“5 的认识”

3、时,先出示主题图,问学生图中有些什么?学生从中数出 5 朵小花,5 只小鸟,5 个气球。从而感知 5 的某些具体意义。再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由 5 根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解 5 的实际意义;第三层次是利用黑板进行画 5 个圆,5 个正方形,5 个三角形等特定图形来代表 5,从而慢慢抽象至数字 5。这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透吧!再如“植树问题”的数学课,我觉得在这节课中,如果利用数形结合的思想进行教学的话,会起到事半功倍的效果。

4、本节课的难点在于三种不同情况的种植方法直接影响它的种植结果,即两头都种,两头都不种和一头种一头不种。但学生很难理解这些字面意思,更难记忆这些,而通过画线段图的方式让学生亲眼看到这三种不同情况的实际意义,就让学生在图示的直观作用下很快能理解这三种不同情况所代表的不同含义了。也就能很好的应用到解题中去。二、对应思想方法 利用数量间的对应关系来思考数学问题,就是对应思想。集合、涵数、坐标等问题都以这一思想为基础。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。 在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。例如:水果店上午卖出橘子 6 筐,下午又卖出同样

5、的橘子 8 筐,比上午多卖 100 元,每筐橘子多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的 100 元对应的筐数是(8-6)筐,此题就迎刃而解了,即100(8-6)=50(元)。 此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。 三、转化思想方法转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。例如:

6、上“整十、整百相乘”一课时,先让学生观察,然后问一问,能不能把整十相乘转化为我们以前所学过的几乘与几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相乘。我想这是不是再渗透转化思想方法呢。四、猜想验证思想方法猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。例如:上“乘法分配律”一课时,我设计了以下几个环节: 1、出示例题:(1)(4+2)25 (2)425+225 学生独自计算结果。2

7、、讨论两个算式的异同点。3、根据自己的发现举出类似的例子,并加以计算。4、验证后,总结归律。这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。现代数学思想方法的内涵极为丰富,诸如还有集合思想、极限思想、优化思想、统计思想、等等,小学数学教学中都有所涉及。我们广大小学数学教师要做教学有心人,有意渗透,有意点拨,重视数学史的渗透,重视课堂教学小结,要以适应小学生年龄特点的大众化、生活化方式呈现教学内容,让学生通过现实活动,主动参与、自主探究,学会用数学思维方法提出问题、分析问题、解决问题,从而让学生的数学思维能力得到切实、有效地发展,进而提高全民族的数学文化素养。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报