ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:2.52MB ,
资源ID:2535595      下载积分:15 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2535595.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(解析函数的孤立奇点.ppt)为本站会员(Facebook)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

解析函数的孤立奇点.ppt

1、1,函数的孤立奇点及其分类(P193),一、函数孤立奇点的概念及其分类 二、函数各类孤立奇点的充要条件 三、用函数的零点判断极点的类型 四*、函数在无穷远点的性态,2,例1,是函数,的孤立奇点.,一 、函数孤立奇点的概念及其分类,3,解,的奇点存在,函数的奇点为,总有,4,5,定义1 若Laurent级数(5-1-1)中所含(z-z0)的负幂项的项数分别为 1)零个, 2)有限个, 3)无穷多个, 则分别称z0为f(z)的可去奇点、极点和本性奇点。且当z0为极点时,若级数中负幂的系数c-m0 并且cn=0(n=-m-1,-m-2, ), 则称z0为f(z)的m级极点,一级极点又称为简单极点。,

2、6,1 可去奇点,如果Laurent级数中不含 的负幂项,则称孤立奇点 称为 的可去奇点.,定义,二、函数各类孤立奇点的充要条件,7,可补充定义,存在,,则 必是 的可去奇点。,(由于这个原因,因此把这样的奇点z0叫做 f(z) 的可去奇点。),这样得到下面的结论:,8,由定义判断:,幂项,由有界性判断:,的可去奇点的充要条件为,注:函数f(z)的可去奇点z0看作它的解析点,且规定,9,解,无负幂项,另解,10,由于z=0为函数 的可去奇点,且当z0时,f(z)1,因此可补充定义 f(0)=1,使 f(z) 在整个复平面上处处解析。,11,如果补充定义:,时,12,Schwarz 引理,13,

3、2 极点,其中关于,的最高幂为,即,的(m级)极点.,那末孤立奇点,称为函数,定义,如果Laurent级数中只有有限多个,的,负幂项,14,则,由极点的定义,15,注意到:,由此可得:,16,的极点的充要条件是,为函数,例,有理分式函数,是二级极点,是一级极点.,由此也得:,17,的Laurent展开式中含有,的负幂项为有限项.,在点 的某去心邻域内,其中 在 的邻域内解析, 且,由定义判别:,由定义的等价形式判别:,由极限判别:,判断 .,18,例如 是函数 的二级极点,这里,19,解,注意: 不能以函数的表面形式作出结论 .,解析且,20,定理 点 为 的 阶极点的充要条件为 是 的 阶零

4、点。,推论2 若点 为函数 的 阶零点(k=1,2),则 z0为函数 的 阶零点;当 时, z0为函数 的 阶极点。,注意: 若函数 在点 解析, ,则当 为函数 的 阶零点或 阶极点时, 也分 别是函数 的 阶零点或 阶极点。,21,解,这些奇点是,孤立奇点.,上述定理为判断函数的极点提供了一个较为简便的方法.,22,例3 求下列函数孤立奇点的类型,并指出极点级数(2) 解: 显然 和 是函数 的孤立奇点,分别取和,则可见z=1和z=-1分别是f2(z)的二阶极点和三阶极点。,23,(4)解: 点 为 的一级零点; 函数 的零点为 , 且 在这些点处不为零,由定理,这些点为函数 的一级零点。

5、由定理2的推论2, 为函数 的二级零点,又由推论1及其注意, 它为 的二级极点,而 为 的简单极点。,24,练习,求,的奇点, 如果是极点, 指出它的,级数.,答案,25,3 本质(性)奇点,则孤立奇点,称为,的本性奇点.,若Laurent级数中含有无穷多个,的负幂项,例如,,含有无穷多个z的负幂项,同时,不存在.,26,例,为f(z)的本性奇点,因为:,27,综上,当z0为f(z)的孤立奇点时,可用极限 值存在有限、为 、不存在,来区分奇点是可 去奇点、极点还是本性奇点。,28,综上所述:,孤立奇点,可去奇点,m级极点,本性奇点,Laurent级数的特点,存在且为 有限值,无负幂项,含无穷多

6、个负幂项,不存在,29,4 、 解析函数在无穷远点的性质,定义 如果函数 在区域 内 解析,则称无穷远点 为 的孤立奇点。在 内, 的罗伦展开式为作变换 ,则在 内的解析函数的罗朗展开式为:,30,定义 如果 是函数 的可去奇点, 极点或者本性奇点,则 分别称是 的 可去奇点,(m级)极点或者本性奇点.因此 (1)如果当 时, ,那么称z= 为函数 的可去奇点; (2)如果只有有限(至少有一个)正整数 , 使得 ,那么称z=是函数f(z)的极点。,(3)如果有无穷多个正整数 ,使得 , 那么称z=是函数f(z)的本性奇点。,31,当z=是函数 f(z) 的极点时,设对于正整数m, cm0, 且当km时,ck=0,此时称z=是函数 f(z)的m级极点。特别地,当m=1时,称z=是函数f(z)的单极点。,32,定理3 设函数 在区域: 内解 析,那么 是函数 的可去奇点,极点 或者本性奇点的充分必要条件分别为: 存在着有限极限,无穷极限或者不存在任何极限 (包括无穷)。推论 设函数 在区域: 内解 析,那么 是函数 的可去奇点的充分必要 条件为:存在着某个数 使得 在 内有界。,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报