ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:73KB ,
资源ID:2383921      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2383921.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2_反比例函数的图象与性质_教案3.doc)为本站会员(微传9988)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2_反比例函数的图象与性质_教案3.doc

1、5.2 反比例函数的图象与性质(二)教学目标(一)教学知识点1.进一步巩固作反比例函数的图象.2.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.(二)能力训练要求1.通过画反比例函数图象,训练学生的作图能力.2.通过从图象中获取信息.训练学生的识图能力.3.通过对图象性质的研究,训练学生的探索能力和语言组织能力.(三)情感与价值观要求让学生积极投身于数学学习活动中,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论,不仅使他们记忆犹新,还能建立自信心.由学生自己思考再经过合作交流完成的数学活动,不仅能使学生学到知识,还能使他们互相增进友谊.教学重点通过观察图象,归纳

2、概括反比例函数图象的共同特征,探索反比例函数的主要性质.教学难点从反比例函数的图象中归纳总结反比例函数的主要性质.教学方法教师引导学生类推归纳概括学习法.教具准备投影片三张第张:(记作5.2.2 A)第二张:(记作5.2.2 B)第三张:(记作5.2.2 C)教学过程.创设问题情境,引入新课师上节课我们学习了画反比例函数的图象,并通过图象总结出当 k0 时,函数图象的两个分支分别位于第一、三象限内;当 k0 时,函数图象的两个分支分别位于第二、四象限内.并讨论了反比例函数 y=与 y=-的图象的异同点.这是从函数的图象位于哪些象限来研究了反比例函数的.我们知道在学习正比例函数和一次函数图象时,

3、还研究了当 k0 时,y 的值随 x 的增大而增大,当 k0 时,y 的值随 x 值的增大而减小,即函数值随自变量的变化而变化的情况,以及函数图象与 x 轴,y 轴的交点坐标.本节课我们来研究一下反比例函数的有关性质. 新课讲解1.做做师观察反比例函数 y=,y=,y=的形式,它们有什么共同点?生表达式中的 k 都是大于零的.师大家的观察能力非同一般呐! 下面再用你们的慧眼观察它们的图象,总结它们的共同特征.投影片:(5.2.2 A)(1)函数图象分别位于哪几个象限?(2)在每一个象限内,随着 x 值的增大.y 的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与 x 轴相交吗?

4、可能与 y 轴相交吗?为什么?师请大家先独立思考,再互相交流得出结论.生(1)函数图象分别位于第一、三象限内.(2)从图象的变化趋势来看,当自变量 x 逐渐增大时,函数值 y 逐渐减小.(3)因为图象在逐渐接近 x 轴,y 轴,所以当自变量取很小或很大的数时,图象能与 x轴 y 轴相交.师大家同意他的观点吗?生不同意(3)小的观点.师能解释一下你的观点吗?生从关系式 y中看,因为 x0,所以图象与 y 轴不可能能有交点;因为不论 x 取任何实数,2 是常数,y永远也不为 0,所以图象与 x 轴心也不可能有交点.师对于(1)和(3)我不需要再说什么了,因为大家都回答的非常棒,不面我再补充下(2)

5、.观察函数 y的图象,在第一象限我任取两点 A(x 1,y1) ,B(x 2,y2),分别向 x 轴,y轴作垂线,找到对应的 x1,x2,y1,y2,因为在坐标轴上能比较出 x1与 x2,y1与 y2的大小,所以就可判断函数值的变化随自变址的变化是如何变化的.山图可知 x1x 2,y2y 1,所以在第一象限内有 y 随 x 的增大而减小.同理可知在其他象限内 y 随 x 的增大而如何变化.大家可以分组验证上图中的其他五种情况.生情况都一样.师能不能总结一下.生当 k0 时,函数图象分别位于第一、三象限内,并且在每一个象限内,y 随 x 的增大而减小.2.议一议师刚才我们研究了 y,y,y=的图

6、象的性质,下面用类推的方法来研究 y-,y-,y=-的图象有哪些共同特征?投影片:( 5.2.2 B)生(1)y=-,y=-,y=-中的 k 都小于 0,它们的图象都位于第二,四象限,所以当 Ax2,y 1y2,所以可以得出当自变量逐渐减小时,函数值也逐渐减小,即函数值 y 随自变量 x 的增大而增大.(3)这些反比例函数的图象不可能与 x 轴相交,也不可能与 y 轴相交.师通过我们刚才的讨论,可以得出如下结论:反比例函数 y的图象,当 k0 时,在每一象限内,y 的值随 x 值的增大而减小;当k0,双曲线分布在一、三象限,因此可考虑 A,C 两个答案,这时对于一次函数来说,y 的值随 x 值的增大而减小,且一次函数的图象与 y轴正半轴相交,显然 A,C 两个答案都不对.若 k0,双曲线分布在二四象限,因此考虑 B,D 两个答案,对于一次函数来说,y 的值随 x 的增大而增大,且一次函数的图象与 y 轴的负半轴相交,应选 D.解:选 D.

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报