ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:171KB ,
资源ID:2246497      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2246497.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(自适应信号处理综述报告.doc)为本站会员(dzzj200808)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

自适应信号处理综述报告.doc

1、自适应信号处理综述报告摘要:本文对国内外自适应信号处理的研究进行了综述,简要介绍了自适应算法的发展和应用,并讲述了 LMS 算法的原理及应用,最后给出了其在信号处理中的应用情况。关键字:LMS 算法;变步长;噪声抵消;系统辨识;自适应信号分离器1. 自适应信号处理概述自适应信号(Adaptive Signal Processing)处理的研究工作始于 20 世纪中叶。在 1957年至 1960 年间,美国通用电气公司的豪厄尔斯(P.Howells)和阿普尔鲍姆(P.Applebaum ) ,与他们的同事们研究和使用了简单的是适应滤波器,用以消除混杂在有用信号中的噪声和干扰。而结构更为复杂的自适

2、应滤波器的研究工作,则由美国斯坦福大学的维德罗(B.Widrow)和霍夫(M.Hoff)始于 1959 年。此期间,他们在自适应理论方面的研究作出了贡献,发明了最小均方(LMS)自适应算法,并提出了一种采用被称为“自适应线性门限逻辑单元”的模式识别方案。同时,原苏联莫斯科自动学和遥控力学研究所的艾日曼及同事们,也研制出了一种自动梯度搜索机器。英国的加布尔(D.Gabor)和他的助手们则研制了自适应滤波器。到 20 世纪 60 年代初期和中期,有关自适应信号处理的理论研究和实践、应用工作更加强了,研究范围已发展到自适应、自适应控制、自适应滤波(包括时域和空域)及其他方面。勒凯(R.Lucky)在

3、美国贝尔实验室首先将自适应滤波应用于商用的数字通信中。1965 年,自适应噪声对消系统在斯坦福大学建成,并成功应用于医学中,主要用于对消心电放大器和记录仪输出端的 60Hz 干扰。此后,瑞格勒( R.Riegler)和康普顿(R.T.Compton)推广了由豪厄尔斯和阿普尔鲍姆所做的工作。数字集成电路和微电子技术的迅速发展给自适应信号处理技术的应用提供了十分优越的条件。自适应系统的应用领域包括通信、雷达、声纳、地震学、导航系统、生物医学电子学和工业控制等。随着人们在改领域研究的不断深入,自适应信号处理的理论和技术日趋完善,其应用的范围也愈来愈广泛。2. 自适应滤波算法基本原理 自适应滤波是利用

4、前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,根据自适应滤波算法优化准则不同,自适应滤波算法可以分为最小均方误差(LMS)算法和递推最小二乘 (RLS)算法两类最基本的算法。自适应滤波器可以分为线性 自适应滤波器和非线性自适应滤波器。非线性自适应滤波器包括 V o h e r r a 滤波器和基于神经网络的自适应滤波器。非线性自适应滤波器具有更强的信号处理能力,但是由于非线性自适应滤波器的计算复杂度高,实际用得最多的仍然是线性自适应滤波器。本文只讨论线性自适应滤波器及其 LMS

5、 算法。图一为自适应滤渡器原理框图。自 适 应 滤 波 器()en()y未 知 系 统()dn()xn图一 自适应滤波器原理图2.1 LMS 算法LMS 算法即最小均方误差(least-mean-squares) 算法,是线性自适应滤波算法,包括滤波过程和自适应过程。基于最速下降法的 LMS 算法的迭代公式如下:e ( n) = d ( n)- w ( n - 1) x ( n) (1)w ( n) =w ( n - 1) + 2( n) e ( n) x ( n) (2)式中,x ( n)为自适应滤波器的输入;d ( n)为参考信号;e ( n)为误差;w ( n)为权重系数;( n)为步长

6、。LMS 算法收敛的条件为:0 0 控制函数的形状,参数 0 控制函数的取值范围。该算法简单且在参数稳定后具有缓慢变化的特性。然而,此算法仍然对噪声比较敏感,在低信噪比环境下,该算法的收敛速度. 跟踪速度和稳态误差并不十分理想,这就大大制约了其应用范围。而本文改进的算法中,不直接用信号误差的平方即 e2 ( n) 调节步长,而是通过将误差信号延长一定的时间从而使噪声信号的自相关性减到零,即用误差的相关值 e( n) e ( n - D) (其中 D 为正整数,D 选为小于输入信号的时间相关半径而大于噪声的时间相关半径) 去调节步长。由于噪声信号的自相关性减到了零,所以噪声信号对步长因子的影响大

7、大降低,从而降低了变步长 LMS 算法对噪声的敏感性。本文改进算法的步长公式即:( n) =(1 - exp ( -e( n) e( n - D) ) ) (5)此算法用误差信号的相关值 e ( n) e ( n - D) 去调节步长,兼顾了收敛速度和误差等性能,并且降低了 LMS 算法对自相关性较弱的噪声的敏感性。本文将此算法应用于自适应噪声抵消中,从理论和实践上都证明此算法效果明显。3. 自适应滤波在信号处理中的应用3.1 自适应噪声对消器在通信和其他许多信号处理应用问题中,接收的信号中往往伴随着干扰和噪声,影响接收信号的可靠性,导致误码率的上升。自适应信号处理就是利用最优滤波器将受到噪声

8、和干扰污染的信号中估计、检测或恢复出原始信号,例如经典的维纳滤波器和卡尔曼滤波器。最优滤波器可以是固定的,也可以是自适应的,其中设计固定滤波器依赖于信号和噪声的先验统计知识,而自适应滤波器则不需要或只需很少有关信号噪声的统计先验知识。自适应噪声抵消(ANC)系统是自适应最优滤波器的一种变形,它是于 1965 年由美国斯坦福大学最先研究成功的。自适应噪声抵消的基本原理是将被噪声污染的信号与参考信号进行抵消运算,从而消除带噪信号中的噪声。其关键问题是自适应噪声抵消系统的参考信号一定要与待消除的噪声具有一定相关性,而与要检测或提取的信号不相关。一般来说,从接收信号中减去噪声似乎是很危险的,极有可能会

9、导致噪声不仅不能被消除,反而会消弱有用信号。但是,自适应噪声抵消系统经过自适应系统的控制和调整,能够有效地从噪声中恢复出原始信号。下面来具体讨论自适应噪声抵消系统的基本原理。假设自适应噪声对消系统的原始输入端用 d(n)=s+ 表示,n0 是要抵消的噪声,并且与 s 不相关。参考输入端用 x(n)表0示,x(n)= 与 是相关的,与 s 不相关。系统的输出用 z(n)表示,z(n)=y(n)-d(n),如图1二所示。自 适 应 滤 波 器噪 声 源信 号 源0()()dnsn1()xn主 通 道参 考通 道噪 声 对 消 器()en输出()y()z图二 噪声对消器原理图依据图二设计一个 2 阶

10、加权自适应噪声对消器,对经加性白高斯噪声信道干扰的正弦信号进行滤波。实现程序代码如下:%自适应噪声对消器 2 介基本 LMS 算法clear allclc t=0:1/1000:10-1/1000;s=sin(2*pi*t);snr=10;s_power=var(s); %var 函数: 返回方差值linear_snr=10(snr/10);factor=sqrt(s_power/linear_snr);noise=randn(1,length(s)*factor;x=s+noise; %由 SNR 计算随机噪声x1=noise; %噪声源输入x2=noise;w1=0; %权系数初值w2=0

11、; e=zeros(1,length(x);y=0;u=0.05; for i=1:10000 %LMS 算法y=w1*x1(i)+w2*x2(i);e(i)=x(i)-y; w1=w1+u*e(i)*x1(i); w2=w2+u*e(i)*x2(i); endfigure(1)subplot(3,1,1)plot(t,x);title(带噪声正弦信号)axis(0 10 -1.2 1.2);subplot(3,1,2)plot(t,noise);title(噪声信号)axis(0 10 -1.2 1.2);subplot(3,1,3)plot(t,e);title(自适应噪声对消器)axis

12、(0 10 -1.2 1.2);【程序运行结果】图三 自适应对消器仿真结果图三中,信号源产生一个正弦信号,并与噪声源产生的高斯白噪声信号叠加后进入噪声对消器主通道,自适应滤波器的输入端是单一的噪声源产生的噪声信号,通过 LMS 算法自适应调整线性组合器的权系数,主通道与参考通道内的噪声信号对消,所输出误差信号即为信号源产生的期望正弦信号。3.2 系统辨识对于一个真实的物理系统,人们主要关心其输入和输出特性,即对信号的传输特性,而不要求完全了解其内部结构。系统可以是一个或多个输入,也可以有一个或多个输出。通信系统的辨识问题是通信系统的一个非常重要的问题。所谓系统辨识,实质上是根据系统的输入和输出

13、信号来估计或确定系统的特性以及系统的单位脉冲响应或传递函数。系统辨识和建模是一个非常广泛的概念,在控制、通信和信号处理等领域里都有重要意义。实际上,系统辨识和建模不仅局限于传统的工程领域,而且可以用来研究社会系统、经济系统和生物系统等。本节只讨论通信和信号处理中的系统辨识和建模问题。采用滤波器作为通信信道的模型,并利用自适应系统辨识的方法对通信信道进行辨识,从而可以进一步地对通信信道进行均衡处理。如果把通信信道看成是一个“黑箱” ,仅知道“黑箱”的输入和输出;以一个自适应滤波器作为这个“黑箱”的模型,并且使滤波器具有与“黑箱”同样的输入和输出。自适应滤波器通过调制自身的参数,使滤波器的输出与“

14、黑箱”的输出相“匹配” 。这里的“匹配”通常指最小二乘意义上的匹配。这样,滤波器就模拟了通信信道对信号的传输行为。尽管自适应滤波器的结构和参数与真实的通信信道不一样,但是它们在输入、输出响应上保持高度一致。因此,在这个意义上,自适应滤波器就是这个未知“黑箱”系统的模型。并且还可以发现,如果自适应滤波器具有足够多的自由度(可调节参数) ,那么,自适应滤波器可以任意程度地模拟这个“黑箱” 。假定未知信道为有限冲激响应(FIR) 结构,构造一个 FIR 结构的自适应滤波器,如图 7-12 所示。在图中,用一伪随机系列作为系统的输入信号 x(n),同时送入未知信道系统和自适应滤波器。调整自适应滤波器的

15、系数,使误差信号 e(n)的均方误差达到最小,则自适应滤波器的输出 y(n)近似等于通信系统的输出 d(n)。可以证明,加性噪声 v(n)的存在并不影响自适应滤波器最终收敛到最优维纳解。可以认为,具有相同输入和相似输出的两个 FIR系统,应该具有相似的特性。因此,可以采用自适应滤波器的特性或其单位脉冲响应来近似替代未知系统的特性或单位脉冲响应。自 适 应 滤 波 器()en()y未 知 系 统()dn()xn图四 自适应系统辨识原理图模型建立的过程通常分为三步: 选择模型的结构和阶次; 估计模型的参数; 验证模型的性能是否满足要求,如果不满足要求,回到第步重新设计。下面 Matlab 代码给出

16、了通过 FIR 滤波器的自适应调整,不断修正其系统函数,使其与未知系统的参数充分逼近,从而使误差最小,达到系统辨识的目的。实现程序代码如下:Clear allee=0;fs=800;det=1/fs;f1=100;f2=200;t=0:det:2-det;x=randn(size(t)+cos(2*pi*f1*t)+cos(2*pi*f2*t);%未知系统b,a=butter(5,150*2/fs);d=filter(b,a,x);%自适应 FIR 滤波器N=5; %滤波器介数delta=0.06;M=length(x);y=zeros(1,M);h=zeros(1,N);for n=N:Mx

17、1=x(n:-1:n-N+1);y(n)=h*x1;e(n)=d(n)-y(n);h=h+delta.*e(n).*x1;endX=abs(fft(x,2048);Nx=length(x);kx=0:800/Nx:(Nx/2-1)*(800/Nx);D=abs(fft(d,2048);Nd=length(D);kd=0:800/Nd:(Nd/2-1)*(800/Nd);Y=abs(fft(y,2048);Ny=length(Y);ky=0:800/Ny:(Ny/2-1)*(800/Ny);figure(1);%绘图subplot(3,1,1)plot(kx,X(1:Nx/2);xlabel(H

18、z)title(原始信号频谱)subplot(3,1,2)plot(kd,D(1:Nd/2)title(经未知系统后信号频谱);xlabel(Hz)subplot(3,1,3)plot(ky,Y(1:Ny/2)title(经自适应 FIR 滤波器后信号频谱);xlabel(Hz)【程序运行结果】图五 系统信号处理频谱从图五可知,自适应 FIR 滤波器能很好地模拟未知系统,它们与原始信号处理后的效果十分接近。这样,通过自适应 FIR 滤波器的参数指标,就能得到未知系统的系统函数,从而可以对未知系统进行功能相同的硬件重构。这在工程应用中有着广泛的应用。3.3 自适应信号分离器自适应噪声抵消系统要求

19、参考输入的参考信号是与噪声相关的。然而,在有些应用中,要想找到一个噪声有较好相关性的参考信号是非常困难的,这使自适应噪声抵消系统难以工作。实际上,如果宽带信号中的噪声是周期性的,则即使没有另外的与噪声相关的参考信号,也可以使用自适应噪声抵消系统来消除这种同期性干扰噪声。输 出 1( 宽 带 信 号 )输 出 2( 周 期 信 号 )自 适 应 滤 波器dr主 通 道参 考通 道自 适 应 噪 声 对 消 器eyZ图六 分离周期信号和宽带信号的电路在图 7-16 中,虚线框中的部分为一自适应噪声抵消系统结构,原始输入 为周期信号和宽带信号的混合。输入信号直接送入主通道,同时经过一个延时为 的延时

20、电路送入参考通道。延时 取足够长,使得参考信道输入 r 中的宽带信号与 x 中的宽带信号不相关或者相关性极小。而在 x 和 r 中的周期信号因其周期性,其相关性也是周期性的,经过延时 之后,其相关性保持不变。然后经过自适应噪声抵消系统处理,参考通道中的自适应滤波器将调整其加权,使输出 y 在最小均方误差意义上接近与相关分量周期信号,而误差接近与非相关分量宽带信号。从而得到两个输出端:输出 1 将主要包含宽带信号,输出 2 将主要包含周期信号。以下是自适应分离器的一个例子:设计自适应信号分离器,用以从白噪声中提取周期信号。其中选取正弦信号 s=sin(2*pi*t/10)为周期信号,宽带噪声信号

21、为高斯白噪声,设置参考通道延迟为 50。实现程序代码如下:%自适应信号分离器t=0:1/10:400;s=sin(2*pi*t/10); %周期信号x=awgn(s,15); D=50;%延迟r=zeros(1,D),x; %信号延迟 Dx=x zeros(1,D);N=5; %r 经 LMS 自适应滤波u=0.02;M=length(r);y=zeros(1,M);w=zeros(1,N);for n=N:Mx1=r(n:-1:n-N+1);y(n)=w*x1;e(n)=x(n)-y(n);w=w+u.*e(n).*x1;endsubplot(3,1,1);plot(t,x(1:(lengt

22、h(x)-D);title(输入信号);axis(1 200 -1.2 1.2);subplot(3,1,2); plot(t,y(1:(length(x)-D);title(周期信号);axis(1 200 -1.2 1.2);subplot(3,1,3);plot(t,e(1:(length(x)-D);title(宽带信号);axis(0 200 -1.2 1.2);【程序运行结果】图七 分离周期信号与宽带信号在无线通信中,通信信号往往被其他信号干扰。通常,通信信号是扩展频谱信号,干扰信号是窄带信号,往往来自于另一频带用户的信号,或者企图破坏通信或检测系统的干扰台的故意干扰信号是窄带干扰

23、。为保障正常通信和提高通信性能,需要抑制宽带信号中的窄带干扰,即设计消除窄带干扰的滤波器。4. 结 论 本文分析了目前几种主要自适应滤波算法,针对 LMS 算法进行了讨论,归纳了 LMS算法的优缺点及适用情况。最后给出了三种自适应滤波的应用情况。其实,自适应信号处理的应用远远不止这三种,随着自适应信号处理理论不断的完善它的应用已经得到了人们的普遍关注。5. 参考文献1 冯冬青 , 孙长峰, 费敏锐. 一种新的变步长 LMS 算法研究及其应用J. 自动化仪表, 2007,28(8): 67-69.2 孙娟, 王俊, 刘斌. 一种新的变步长 LMS 算法及其应用 J. 雷达科学与技术, 2007, 5(5): 379-383.3 张玲玲, 唐晓英, 刘伟峰. 一种新的变步长 LMS 自适应滤波算法性能分析J. 生命科学仪器, 2005, 3(5): 39-41.4 孙恩 昌,李于衡,张冬英,等.自适应变步长 L MS 滤波算法及分析 J .系统仿真学报 5高鹰,谢胜利基于相关函数的递推最小二乘算法及其在回波消除中的应用 J .通信学报

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报