ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:687.50KB ,
资源ID:21230488      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-21230488.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(13.3 统计与统计案例55改.doc)为本站会员(eco)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

13.3 统计与统计案例55改.doc

1、第三节 统计与统计案例考纲解读1. 理解随机抽样的必要性和重要性。2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。4. 理解样本数据标准差的意义和作用,会计算数据标准差。5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想。6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。8. 了解最小二乘法的思想,能根据给出的线性回

2、归方程系数公式建立线性回归方程。9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。(1)独立性检验了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用。(2)回归分析了解回归分析的基本思想、方法及其简单应用。命题趋势探究1. 本节内容是高考必考内容,以选择题、填空题为主。2. 命题内容为:(1)三种抽样(以分层抽样为主);(2)频率分布表和频率分布直方图的制作、识图及运用。(1)(2)有结合趋势,考题难度中下。3. 统计案例为新课标教材新增内容,考查考生解决实际问题的能力。知识点精讲一、抽样方法三种抽样方式的对比,如表13-7所示。类型共同点各自特点相互关系使用范围简单随机

3、抽样抽样过程都是不放回抽样,每个个体被抽到的机会均等,总体容量N,样本容量n,每个个体被抽到的概率从总体中随机逐个抽取总体容量较小系统抽样总体均分几段,每段T个,第一段取a1,第二段取a1+T,第三段取a1+2T,第一段简单随机抽样总体中的个体个数较多分层抽样将总体分成n层,每层按比例抽取每层按简单随机抽样或系统抽样总体由差异明显的几部分组成二、样本分析(1)样本平均值:。(2)样本众数:样本数据中出现次数最多的那个数据。(3)样本中位数:将数据按大小排列,位于最中间的数据或中间两个数据的平均数。(4)样本方差:。众数、中位数、平均数都是描述一组数据集中趋势的量,方差是用来描述一组数据波动情况

4、的特征数。三、频率分布直方图的解读(1)频率分布直方图的绘制由频率分布表求出每组频数ni;求出每组频率(n为样本容量);列出样本频率分布表;画出样本频率分布直方图,直方图横坐标表示各组分组情况,纵坐标为每组频率与组距比值,各小长方形的面积即为各组频率,各小长方形的面积总和为1。(2)样本估计总体步骤:总体抽取样本频率分布表频率分布直方图估计总体频率分布。样本容量越大,估计越精细,样本容量无限增大,频率分布直方图无限无限趋近概率分布密度曲线。(3)用样本平均数估计总体平均数,用样本标准差估计总体标准差。公式:,s2(aX+b)=a2s2(X)。四、线性回归线性回归是研究不具备确定的函数关系的两个

5、变量之间的关系(相关关系)的方法。对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn),其回归方程的求法为其中,(,)称为样本点的中心。步骤:画散点图,如散点图中的点基本分布在一条直线附近,则这条直线叫这两个变量的回归直线,直线斜率k0,称两个变量正相关;k10.828,有99.9%把握称“A取A1或A2”对“B取B1,B2”有关系;若10.828K26.635,有99%把握称“A取A1或A2”对“B取B1,B2”有关系;若6.635K23.841,有95%把握称“A取A1或A2”对“B取B1,B2”有关系;若K23.841,没有把握称A与B相关。题型归纳及思路提示题型

6、181 抽样方式 思路提示根据所抽取的对象与要求,若抽取的对象中有明显差异,考虑用分层抽样,否则选择简单随机抽样或系统抽样。当总体中的个体较少时,常采用简单随机抽样;当总体中的个体较多时,常采用系统抽样。例13.16【2017江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.变式1 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9。抽到的32人中,编号落

7、入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C。则抽到的人中,做问卷B的人数为( )。A. 7 B. 9 C. 10 D. 15变式2 某校共有学生2000名,各年级男、女生人数如表13-9所示,已知在全校学生中任取一名,抽到二年级女生的概率为0.19,现用分层抽样的方法,在全校抽取64名学生,则应在三年级抽取的学生人数为( )。表13-9一年级二年级三年级女生373xy男生377370z变式3 某企业三月中旬生产A,B,C三种产品其3000件,根据分层抽样的结果,企业统计员制作了统计表格,如表13-10所示,由于不小心,表格中的A,C产品的有的有关数据

8、被污染看不清楚,统计员记得A产品样本容量比C产品的样本容量多10,由此可得C产品数量为_。表13-10产品类型ABC产品数量(件)1300产品样本数量(件)130题型182 样本分析用样本估计总体思路提示对样本进行分析并用样本估计总体,包括用样本数字特征估计总体数字特征和用样本的频率分布估计总体的频率分布。在进行样本分析时,应从统计图表中获取数据。体现在以下几个方面:(1)在频率分布直方图中,长方形面积=组距=频率,即随机变量的概率;(2)对于频数、频率、样本容量,已知其二必可求第三个;(3)随机变量在各组数据内的频数之和为样本容量。例13.17【2016年高考四川理数】我国是世界上严重缺水的

9、国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5)分成9组,制成了如图所示的频率分布直方图.(I)求直方图中a的值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.变式1 【2016高考山东理数】某高校调查了200名学生每周的

10、自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56(B)60(C)120(D)140变式2 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验。选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙。(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列

11、和数学期望;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如表13-11所示。表13-11品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果你认为应该种植哪一品种?附:样本数据x1,x2,xn的样本方差,其中为样本平均数。例13.18某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图13-18所示,规定85分及其以上为优秀。(1)表13-12所示的是这次考试成绩的频数分布表,求正整数a,b

12、的值;表13-12区间75,80)80,85)85,90)90,95)95,100人数50a350300b(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(3)在(2)中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X,求X的分布列与数学期望。0.070.060.050.040.030.020.010 75 80 85 90 95 100 分数 图 13-18频率组距变式1 【2016高考北京文数】某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费

13、,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.变式2 【2016高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于

14、22.5小时的人数是()(A)56(B)60(C)120(D)140题型183 线性回归方程思路提示首先通过对散点图观察分析是否为线性回归,若为线性回归则利用最小二乘法求出回归直线方程。具体步骤为:(1)求,;(2)求;(3) ;(4)代入公式,求;(5)代入公式求,代入直线方程得。这里要注意的是回归直线恒过样本中心点(,)。例13.19【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为已知,该班某学生的脚长为24,据此估计其身高为(A) (B) (C) (D)来源

15、:学&科&网Z&X&X&K变式1.【2016高考新课标3理数】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;来源:学科网ZXXK(II)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量附注:参考数据:,2.646.参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:变式2 调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并出调查数据得到y对x的回归直线方程:=0.254x_0

16、.321。由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元。题型184 独立性检验思路提示独立性检验是判断两个分类变量是否存在相关关系的案例分析方法,它与概率中事件的独立性不同,具体步骤为:(1)列出22列联表;(2)求;(3)最后根据临界值作出判断。例13.20 【2017课标II,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A的概率;(2)

17、 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg箱产量50kg旧养殖法新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附: 变式1 为比较注射A,B两种药物产生的皮肤疱疹的面积,选200只家兔作试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。表13-18和表13-19所示的分别是注射药物A和药物B后皮肤疱疹面积的频率分布(疱疹面积单位:mm2)。表13-18疱疹60,65)65,70)70,75)75,80频数30402010表13-19疱疹面积60,65)65,

18、70)70,75)75,8080,85)频数1025203015(1)完成图13-22和图13-23所示的分别注射药物A,B后皮肤疱疹面积的频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;0.080.070.060.050.040.030.020.01频率/组距0 60 65 70 75 80 85 疱疹面积 图 13-220.080.070.060.050.040.030.020.01频率/组距0 60 65 70 75 80 85 疱疹面积 图 13-23(2)完成表13-20所示的22列联表,并回答能否有99.9%的把握认为注射药物A后的疱疹面积与注射药物B的疱疹面积有差异.疱

19、疹面积小于70mm2疱疹面积不小于70mm2合计注射药物Aa=b=注射药物Bc=d=合计附:. 变式2 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷“与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷“人数为.若每次抽取的结果是

20、相互独立的,求的分布列,期望和方差附:,0.050.013.8416.635最有效训练55(限时40分钟)1【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别为x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是Ax1,x2,xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数2甲乙两名同学在5次体育测试中的成绩如图13-25所示,则有( )A,乙比甲稳定B,甲比乙稳定C,乙比甲稳定D,甲比乙稳定3为了了解某地区高三学生的身体状况,抽查了该地区100名17.518岁的男生体重(千克

21、),得到频率分布直方图(如图13-26所示).由图知这100名学生在的学生人数为( )A20B30C40D504【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳5【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值

22、也相等,则x和y的值分别为A. 3,5 B. 5,5 C. 3,7 D. 5,7”6设是娈量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图13-27所示),以下结论中正确的是( ) 图 13-27Ax和y的相关系数为直线l的斜率Bx和y的相关系数在0到1之间C当n为偶数时,分布在l两侧的样本点的个数一定相同D直线l通过点7某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.8某学校食堂随机调查了一些学生是否因距离远近而选择食堂就餐的情况,经计算得到K2=4.932.所

23、以判定距离远近与选择食堂有关系,那么这种判断出错的可能性为 .附表13-25:P()0.0500.0100.001k3.8416.63510.8289某数学老师身高176cm,他爷爷,父亲,儿子的身高分别是173cm,170cm和182cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是 Cm10【2016高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_(米).11为调查某社区居民的业余生活状况,研究这一社区居民在20:0022:00时间段的休闲方式与性别关系,随机调查了该社区8

24、0人,得到下面的数据表(如表13-26所示). 表 13-36休闲方式性别看电视看书合计男105060女101020合计206080(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和数学期望;(2)根据以上数据,能否有99%的把握认为“在20:0022:00时间段居民的休闲方式与性别有关系”?参考公式:,其中n=a+b+c+d.参考数据(如表13-27)P()0.150. 100.050.0250.010k2.0722.7063.8415.0246.63512【2017课标1,理19】为了监控某种零件的一

25、条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布(1)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺寸,用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的学科网数据,用剩下的数据估计和(精确到0.01)附:若随机变量服从正态分布,则,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报