1、1金属凝固课程编号: 70120013 课程名称: 金属凝固 英文名称: Solidification of Metals任课教师: 熊守美学 分: 3 (课内学时 3/周)开课学期: 秋季学期课程类别: 研究生学位课先修课程: 材料加工原理教 材: 金属凝固原理(第 2 版) ,胡汉起主编,北京:机械工业出版社,2000一、内容简介金属凝固过程中的传输现象(能量传输、质量传输及动量传输) 及其规律;凝固热力学和凝固动力学、固液界面理论、晶体生长方式及规律;现代凝固控制技术及其原理。二、课程的目的及要求金属凝固是材料加工工程学科硕士研究生学位课程之一,希望学生通过学习能应用凝固理论解决实际凝固
2、过程中的问题: 应用相平衡及控制液固相转变及微观组织形成的传输现象和界面现象等分析凝固过程。 理解和预测凝固组织的形成 深入了解铸件凝固过程中的流体流动、传热和传质现象。 将凝固基本原理应用到实际凝固过程。 了解现代凝固控制技术及其基本原理三、内容提要第一章:凝固过程的传热(9 学时)1.1 凝固过程的传热特点1.2 非金属型铸造的凝固传热1.3 金属型铸造的凝固传热1.4 凝固过程数值模拟技术1.5 凝固过程数值模拟研究进展第二章:凝固热力学(6 学时)2.1 液体金属结构2.2 二元合金的稳定相平衡2.3 溶质平衡分配系数2.4 液固相界面成分及界面溶质分配系数第三章:凝固动力学(3 学时
3、)3.1 自发形核3.2 非自发形核3.3 固液相界面结构3.4 晶体生长方式2第四章:单相合金的凝固(12 学时)4.1 凝固过程的溶质再分配4.2 金属凝固过程中的“成分过冷”4.3 界面稳定性与晶体形态4.4 胞晶组织与树枝晶4.5 微观偏析4.6 微观组织模拟研究进展第五章:多相合金凝固(6 学时)5.1 概述5.2 金属金属共晶的凝固5.3 金属非金属共晶的凝固5.4 偏晶合金的凝固5.5 包晶合金的凝固第六章:凝固过程中液态金属的流动(6 学时)6.1 液态金属的对流6.2 枝晶间液态金属的流动6.3 宏观偏析6.4 铸件宏观偏析数值模拟第七章:单向凝固技术(3 学时)7.1 单向
4、凝固工艺7.2 单晶生长7.3 柱状晶的生长7.4 自生复合材料第八章:快速凝固(3 学时)8.1 快速凝固技术及其传热特点8.2 快速凝固的热力学8.3 快速凝固的动力学及界面形貌稳定性8.4 快速凝固晶态合金的显微结构特征与应用8.5 快速凝固的非晶态合金四、参考书1. Merton C. Flemings, Solidification processing, New York : McGraw-Hill, 1974.凝固过程 (美) 弗莱明斯 著 关玉龙 等译,北京 : 冶金工业出版社, 19812. Fundamentals of solidification / W. Kurz,
5、D.J. Fisher. Rockport, MA : Trans Tech Pub., 1986.库尔. 费希尔 著 毛协民 等译,凝固原理,西安 : 西北工业大学出版社, 19873. I. Minkoff., Solidification and cast structure, Chichester : Wiley, c1986.4. 周尧和、胡壮麒、介万奇编著,凝固技术,北京 : 机械工业出版社, 19985. (日) 大野笃美 著 唐彦斌, 张正德,金属凝固学,北京 : 机械工业出版社, 19836. Davies, G. J. , Solidification and castin
6、g , London : Applied Science Publishers Ltd., 1973.(英)戴维斯 著 陈邦迪, 舒震 译,凝固与铸造,北京 : 机械工业出版社, 19817. Tiller, William A., The science of crystallization : microscopic interfacial phenomena, Cambridge England : Cambridge University Press, 1991.3Solidification of Metals (70120013)Credits: 3 points, 3 hours
7、 lecture per weekInstructor: XIONG Shoumei, Dr. Eng., ProfessorTextbook: H.Q. Hu, Solidification of Metals, the second edition, China Machine Press, Beijing, 2002(In Chinese)References:1. Merton C. Flemings, Solidification processing, New York : McGraw-Hill, 1974.2. Fundamentals of solidification /
8、W. Kurz, D.J. Fisher. Rockport, MA : Trans Tech Pub., 1986.3. I. Minkoff., Solidification and cast structure, Chichester : Wiley, c1986.4. Y.H. Zhou, Z.Q. Hu, and Q.W. Jie, Solidification technology, China Machine Press, Beijing, 1998.5. Davies, G. J. , Solidification and casting, London : Applied S
9、cience Publishers Ltd., 1973.6. Tiller, William A., The science of crystallization : microscopic interfacial phenomena, Cambridge England : Cambridge University Press, 1991.Prerequisite:Principles of Materials ProcessingCourse Description:Main contents of the course involve: transformation phenomena
10、 (heat transfer, mass transfer and momentum transfer) and the rules during the solidification process, thermodynamics and kinetics during solidification, theory of solid/liquid interface, crystal growth and its rules; principles and modern technologies on solidification process control.Course Object
11、ives:Solidification of metals is one of the master degree courses of materials processing engineering. The goal of this course is to enable the student to solve practical solidification processing problems through the application of solidification theory. The objectives of this course are: to analyz
12、e solidification processing in terms of phase equilibria, transport and interface phenomena governing microstructure development and liquid-solid transformations; to understand and predict solidification structure; to understand the fluid flow, heat and mass transfer during solidification process; t
13、o apply solidification theory to practical solidification process; to learn modern solidification control techniques and the basic principles.Grading:Class discussion - 10% Review of a selected topic in the field - 20% Oral presentation and discussion of the selected topic 20%Final exam - 40%4Course
14、 OutlineChapter 1: Heat transfer during solidification process1.1 Heat transfer characteristics during solidification process1.2 Heat transfer in solidification of non- metallic mold casting process1.3 Heat transfer in solidification of metallic mold casting process1.4 Numerical simulation technique
15、s of solidification process1.5 Progress in numerical simulation of solidification processChapter 2: Thermodynamics of solidification process2.1 Structure of liquid metals2.2 Phase equilibrium of binary alloys2.3 Equilibrium solute distribution factor2.4 Composition and solute distribution factor at
16、liquid/solid interfaceChapter 3: Kinetics of solidification process3.1 Homogeneous nucleation3.2 Heterogeneous nucleation 3.3 Solid/liquid interface structure3.4 Crystal growthChapter 4: Solidification of single phase alloys4.1 Solute redistribution of solidification process4.2 Constitutional underc
17、ooling of solidification process4.3 Interface stability and crystal morphology4.4 Cell and dendrite structures4.5 Microsegregation4.6 Progress on microstructure simulationChapter 5: Solidification of multi-phase alloys5.1 Introduction5.2 Metal-Metal eutectic solidification5.3 Metal-Non-metal eutecti
18、c solidification5.4 Solidification of monotectic alloys5.5 Solidification of peritectic alloysChapter 6: Fluid flow of liquid metals during solidification6.1 Convection of liquid metals6.2 Interdendritic fluid flow of liquid metals6.3 Macrosegregation6.4 Numerical simulation of macrosegregarion phen
19、omenon Chapter 7: Unidirectional solidification technology7.1 Unidirectional solidification processes57.2 Single crystal growth7.3 Columnar cell growth7.4 In situ composite materialsChapter 8: Rapid solidification8.1 Rapid solidification techniques and their heat transfer characteristics8.2 Thermodynamics of rapid solidification8.3 Kinetics of rapid solidification and interface stability8.4 Microstructure characteristics of rapid solidified crystal alloys and their applications8.5 Amorphous alloys