ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:159.15KB ,
资源ID:1757413      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1757413.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(光线追迹及透镜的高斯理论.pdf)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

光线追迹及透镜的高斯理论.pdf

1、Chapter Ray-tracing and Gaussian theory of lenses 光线追迹及透镜的高斯理论 2.1 Ray tracing procedure 光线追迹过程 2.2 Magnification and Lagrange theorem 放大倍率和拉格朗日理论 2.3 Gaussian theory of lenses 透镜的高斯理论 2.4 Conjugate distance relationships 共轭距关系 1 Newtons equation 2 Gaussian equation 3 Nodal points 4 Longitudinal mag

2、nification PDF 文件使用 “pdfFactory Pro“ 试用版本创建 Purpose: determine the position, size of image (illumination) Problem: 1 How many cardinal points are there (principal, focal, nodal) What are their characters? 2 What is the relationship between the principal sections H, H (=+1) What is the relationship b

3、etween the focal length f, f ( nnff = ) 3 write down the equation about the f and fl 1kuhf = kkf uhl = (Back focal length) (Back focal distance) w yf = 4 how to express the Lagrange equation For a distant object () tgwftgfy = w For a lens in the air ( ww = , nn ) PDF 文件使用 “pdfFactory Pro“ 试用版本创建 2.1

4、 Ray tracing procedure 1 The type of Rays Rays in general fall into three classes: Meridional, paraxial, skew u Meridional ray lie in meridional plane ,which is the plane containing the lens axis and an object point lying to one side of the axis u Paraxial ray extremely close to the optical axis. Th

5、e image formed by paraxial ray is deemed to be a perfect image. u Skew rays do not lie in the meridian plane, but they pass in front of it or behind it and pierce the meridional plane at the spot diagram. 2 ray tracing We use a set of trigonometric formula a Z b C D PDF 文件使用 “pdfFactory Pro“ 试用版本创建

6、Meridional ray tracing The rules of sign 1) aperture angle ,u u If clockwise rotation takes us from axis to ray positive counterclockwise rotation negative 2) incidence angle and refracted angle II, Turn the ray to normal If clockwise rotation positive counterclockwise negative 3) ,r ll : from surfa

7、ce vertex to object A , image A It is reckoned: positive: if along light travel negative: if against light travel , yyhh z : From axis to object B , image B Positive: above the surface axis Negative: under the surface axis consider triangle ,according to sine law, we get ruLrI )sin(sin = So Ur rLI s

8、insin = (1) Apply the law of refraction to determine I InnI sinsin = (2) From UIUI +=+=f IUIU += (3) Consider triangle, similar to (1) PDF 文件使用 “pdfFactory Pro“ 试用版本创建 rLIrU= sinsin sin sin UIrrL += (4) If we known L, U, we can calculate L, U For plane surface , )sin(sin UI = ,R is infinite. )()(ULU

9、LhIUUI= IILUULL = Conclusion for different aperture angle U, the image distance L is different ,so a perfect spherical surface system has aberrations 3 paraxial rays Paraxial ray is in theory infinitely close to the optical axis, so uUiI=sinsin uirrliuiuinniur rli+=+=Surface transferring equation 11

10、12112udhhdll= 4 Abbe s invariable From inni = )()( urhnurhn = -u I I h n n -u PDF 文件使用 “pdfFactory Pro“ 试用版本创建 fhr nnhnuun = (1) rnnhlhnlhn = fnrnnlnln = (2) Abbe: Qlrnlrn = )11()11( (3) Conclusion: All the paraxial angles II, , ,u u have disappeared . This relation ( r nnlnln = ) shows that .All pa

11、raxial rays emerging from a given object point pass through the same image point. No matter how large is the angle u? 5 concave or convex mirror r 125., 177.6, 254., 41.8, d -8.9, -100, 134.2, 15.4, 1 n -1, -1.545, -1, 1, 1.545 The rule is: to list the surface in succession in the order the light st

12、rikes them, with correct axial separation d and index n Note that if the light is traveling from right to left: Both d and n must be entered with a negative sign. PDF 文件使用 “pdfFactory Pro“ 试用版本创建 2.2 magnification and Lagrange theorem Transverse magnification = (transverse dimension of the image y)/

13、 (transverse dimension of the object y) or (height of image y)/ (height of object y) Trace a paraxial ray from B, the top of the object, to the surface vertex and onto the top of the image at B lyI = lyI = From the law of refraction nInI = lynlyn = Multiply by h in both sides lhynlhny = Juynnyu = is

14、 known as the theorem of Lagrange = 222222111111 yunyunyunyun For complete system (nuy) product is optical invariable, so J is called the Lagrange Invariable. 11kkkunnuyy =b (1) If lens in the air 1kuu=b Because of 111111 , lhulhu = For single surface, the magnification is lnnlyy11 =b (2) PDF 文件使用 “

15、pdfFactory Pro“ 试用版本创建 For complete system with K surfaces kkkkkkkkkkllllllllnnlnlnlnlnlnlnlnlnyyyyyyyyyy32132113333222211113322111=b(3) PDF 文件使用 “pdfFactory Pro“ 试用版本创建 2.3 Gaussian theory of lenses 1 The four cardinal points Gauss met the problem of focal length for thick lenses by postulating fou

16、r cardinal points in any lens: two focal points F, F and two principal points H, H 1. A set of rays A.B.C. enter the left-hand end of the lens, and are parallel to the lens axis. 2. After pass through the lens, these rays cross the axis at various points. 3. By extending each ray backward or forward

17、 until the entering and emerging portion intersect, we can locate an equivalent refracting point for each ray, Q, R, P. The locus of all such points is equivalent refracting locus of lens. the locus within the paraxial region is a plane perpendicular to the lens axis called the principal plane H The

18、 image point for paraxial rays lies at the focal point F The axial distance from Hto F is called the focal length f Similarly we can determine another pair cardinal point H F, for light entering the lens parallel to the axis from the right and emerging to left. 2 Relation between principal planes tw

19、o principal planes are images of each other at unit magnification According to reversibility of the optical path We reverse the arrows on the ray B. We end up with two rays entering through R and emerging through Q. 3 Relation between the focal length PDF 文件使用 “pdfFactory Pro“ 试用版本创建 Suppose we plac

20、e a small object at front focal point F, and draw two rays from the top of the object into the lens fh=w fh=w ff=ww (1) Move the small object along the axis to H, the image is at H. Applying Lagrange equation to this pair of conjugates, we get nnhnhn = wwww (2) Combing the two equations, gives nnff

21、= (3) Focal length 1kuhf = Back focal distance kkf uhl = (4) 4 the Lagrange equation for a distant object yunnuy = has no meaning for an infinitely distant object ,for u=0,y= ,and the product of zero times infinity is indeterminate. We interpret Lagrange equation for a distant object. PDF 文件使用 “pdfF

22、actory Pro“ 试用版本创建 hnylhnyunhnylhnnuy ww= ww nn = (1) wwwtgfnntguhnnyhntgyun=(2) For a lens in the air ),( ww = nn ww tgftgfy = Two expressions for focal length: wyfuhf=is used for paraxial ray 5 lens power The power of a single refracting surface is defined as rnn /)( =f The power of a complete len

23、s system is defined as fn=f n : the refractive index in the image space nnff = similar fn=f The usual unit of power is diopter For a lens with surface number K kkkkkk hununhununhununfff=222222111111 Add all these expressions together, the sum becomes merely = kkk hunun111 f For the case of an infini

24、tely instant object = kkk hhhunu11111,0 f PDF 文件使用 “pdfFactory Pro“ 试用版本创建 = k hh111 ff 2.4 Conjugate distance relationships Purpose: determine the position and size of the image of a given object 1 distance from focal points F, F By similar triangles fyfHQxy=xfyy = b (1) ABF PHF fyfHPxy = fxyy =b (

25、2) Newtons equation fxxf = 2nnfxxffxx=)( nnff = PDF 文件使用 “pdfFactory Pro“ 试用版本创建 2 distance from principal points H,H 1)(,=+=+=lflffffffllfllffflflflxflxImage magnification is lnnlyy =b In the air or homogenous medium llfll111=b3 nodal points Nodal points are a pair of conjugate points having the pr

26、operty that angular magnification=1 (Paraxial ray entering toward the first surface will emerge from second at the same slope) nnyyynyn=bwwwwNewtons formula PDF 文件使用 “pdfFactory Pro“ 试用版本创建 )(nnfnnxnnfffxnnfxyy=bSimilarly )(fxfnnnnnnfxnnxf=b4 longitudinal magnification L, M is the ratio of the axial

27、 dimension of an image to the corresponding axial dimension of the object dxdx=a or xx= a , xdx may be the physical sizes of image and object ,maybe a movement of object and image along the axis . Differentiating formula rnnlnln = 22222baannllnndldldllndlln=Multiplying numerator and denominator by h

28、2, gives 2222nUdlndlUUnnUdldl=a Magnification invariant For large axial dimension PDF 文件使用 “pdfFactory Pro“ 试用版本创建 BBAAfxfxbb= When object moves from A to B The change in image distance ABis given by )()( ABBA fxxBA bb = Similarly the change in the object distance AB is BABAABBABABBAAffABBAfxxABfxfxbbbbbbabbbb=)11()()11()(,Application optical bench PDF 文件使用 “pdfFactory Pro“ 试用版本创建

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报