ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:140.13KB ,
资源ID:1757362      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1757362.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(关于小数据量法计算最大lyapunov指数的讨论.pdf)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

关于小数据量法计算最大lyapunov指数的讨论.pdf

1、1l E9 Kv Lyapunov ) do V (Z +v0 , q 430033) K 1 ) l E9 Kv Lyapunov M15bl E 3 aH ( | ( 1 z Z b ( E f / I nK s V 1 9 T b4 4 B L u E K vLyapunov i L u/K) F. 29 TYb 1oM Lyapunov HW s Discussion on the Method for Calculating Largest Lyapunov Exponents from Small Data Sets Lu Zhen-bo Cai Zhi-ming Jiang Ke

2、-yu (College of Electronic Engineering, Navy Engineering University, WuHan 430033, China) Abstract: The problems on the method for calculating largest Lyapunov exponents from small data sets are discussed. The algorithm is robust the changes in the following quantities: embedding dimension, reconstr

3、uction delay and mean period of the time series. We indicate that the algorithm is still accurate without considering temporal separation, if the mean period is unknown. A new criterion of selecting linear zone for fitting the largest Lyapunov exponents is presented. In the end, the effects of addit

4、ive noise is discussed. Key Words: chaos, Lyapunov exponents, time series analysis 1 + M | # + X mM bWs I K # jXjXjjXjXXdjmin)0( = (2) I K # S )0(jd jjXjX V U=S b E I K # BEL K s 1 p jXjXpjj (3) p HW ( VYV q ( q 9 b * Kv Lyapunov 1 V YVE (? q9 b I 9 # HW jXjXi )(idjijijjXXid+=)( (4) ),min(,2,1 jMjMi

5、 = LL I K # jXjX 1 ? q * )(1)(tijjeCid= )0(jjdC = (5) (5) T | )ln()(ln)(ln1tiCidjj+= (6) (6) T V A wLBS = L1“ wL| qiidj)(ln t1 b yN% p (“i j )(ln idjt )(iy=qjjidtqiy1)(ln1)( (7) q d , “ b 4 wL B L u i Kl =E T B L L| q Kv Lyapunov )(idjiiy )(1 b 23M1) #_ L (1)(7) T V AKv Lyapunov 1 p #/ 5 (1)1 HW ZE

6、V H 3 p H1M1E (Auto-Correlation, AC)3a E (Mutual Information, MI)6 p 3 G-P E5aLK #E (False Nearest Neighbor, FNN)7b ZE TB B RosensteinD 2YVv _ L L l E 3 H |i 1 z Zb yN V Hm 3 ZE 91 M1E G-P E pKv Lyapunov m1 Bb Logistic Lorenz xs _ Lb Logistic S )(1)(4)1( nxnxnx =+ (8) Lorenz Runge-Kutta Ess 0.01 =+=

7、bzxyzyrxxzyyxx& )(9) 4,92.45,16 = br b “V Logistic 500 Lorenz xs 5000 bV 1 Logistic Lorenz xs Kv Lyapunov Yb V 1 Kv Lyapunov Y System N m p Calculated1 Expected1ref.% errorLogistic 500 1 2 (G-P) 50 0.698 0.6938+0.72 1 (FNN) 0.702 +1.30 Lorenz 5000 12 (AC) 5 (G-P) 50 1.467 1.5001-2.20 11 (MI) 3 (FNN)

8、 1.471 -1.93 Logistic S 3yN H9 | 1 G-P E p 3 2LK# E p 3 1 3 pKv Lyapunov 1 sY 0.698 0.702 X 0.693V bLorenz %3.1 xs 1M1E G-P E p H 12a 3 5EL K #E p H 11a 3 3 3 pKvLyapunov 1 sY 1.467 1.471 X 1.500 V b ( %2.2 p ( |501 ( hB A (2) b (2)1 HW ( T (3) E I K # BEL K s b I K #Wv ( D 2 ( VYV q ( q 9 b1 ( 5Bi

9、1 v pbBZ jXjX3 q i1 A 6BZ t 0 LiB b O ) Z E ( YV_?C l E ( |9 1 z Zb Logistic Lorenz xs I ( 4Kv Lyapunov YTnV 2b V 2 ( Kv Lyapunov Y System N m p Calculated1 Expected1ref.error%Logistic 500 1 2 1 0.703 0.6938+1.44 50 0.698 +0.72 Lorenz 5000 12 5 1 1.454 1.5001-3.07 50 1.467 -2.20 V V A ( psY | 1a50 H

10、 l E p Logistic Lorenz xs Kv Lyapunov 1 V byN ( E f / V I nK s !%1.31=p 9 V1 z9 Tb (3)1L u - V 4 wLB L u iKl=ETBL L| q Kv Lyapunov iiy )(1 b I n )(iyf = B f )1()()()(lim0=iyiyiiiyiydidffi(10) X f / T L1 “ * iiy )( f B by N wL K r - | wLiiy )(iiyiy )1()( iMM l u XL ubm 1 m 2 Logistic Lorenz xs 9 Tb m

11、 1 Logistic m 2 Lorenz xs 4m 1(b) H wL62=i iiyiy )1()( +B wL | qMyN Logistic L u | bm 2(b)iiy )(62=i 501=i H wL A Hiiyiy )1()( 300200=i )1()( iyiy i9v7hl v t 0 H w L B1 l S =M y N Lorenz 20050=iiiyiy )1()( xs L u |by 0 bW K I K # i KV 0yN i9vB H wL KrwL K t 0b 6 M bWy wL L u/20050=ijXjX)(idjiiy )(ii

12、yiy )1()( iiy( )1)1( + m | (4) b (4)1F. 2) L= “ H VE Y | TF. 2 ) b IF. 2l E9 TYD 2 Logistic Lorenz xs F . 2il.1 (Signal to Noise Ratio, SNR) . 2 q| q=SNR (11) i V 39 Tb V 3 F. 2Kv Lyapunov Y2System N m SNR Calculated1 Expected1ref.error%Logistic 500 1 2 1 0.704 0.6938+1.6 10 0.779 +12.4 Lorenz 5000

13、11 3 1 0.645 1.5001-57.0 10 1.184 -21.1 . 2 Kv Lyapunov kv I K # V 1 VrbyN4 .1 Kv Lyapunov vVV 3 ALogistic H q Q711=SNR 10=SNR Hl E db Logistic HT p/ |B b 1=SNRn5 I n . 2 Kv Lyapunov 9 b ! . 2 H,21 Nnnn L 3 HM bW I K # mjNjN=+=10222)(minmin)0(mkkjkjjjjNjnnNNdj(12) i HW )(idj=+=10222)()(mkikjikjijijj

14、nnNNid(13) B 1 T )0(2jd )(2ldj1,1,0 = ml L ?C H i)0(2jd )(2ldjlm 5M Fb I n 2222,minmin)(min babacbaba+=+= (14) yN B)(idj=li 1,1,0 = ml L 1 | l O )1()()0( mdddjjjL T (7) wL M ? pb iiy )( iidj)( s yN i Hin Ni ,2,1 L= M bWN . 2 V K iv 3 3 H ( “dN 0 - s ! 3 m4=m bm 3m 4sY H 5= 1= H9 Tmb m 3 . 2 , 4,5 =

15、m m 4 . 2 , 4,1 = m m 3(a) )(iy 15,10,5,0=i H | l O )15()10()5()0( yyyy wLr - E B aL ub m 4(a) iiy )(1= E lG )3(),2(),1(),0( yyyy)3()2()1()0( yyyy bm 4(a) wL r - V| L u iiy )(41=i )3()2()1()0( yyyy M bW Q # ? qyN| L u pb 3 | H9 V MTb 41=i mV 3 Logistic H f p9L uTbm 5 Logistic HTmm 6 |“ H 3 H . 2Tmbm

16、 5 T4 L u * Kv Lyapunov 1=SNR1=SNR21=i1 0.706 D 2TM 0.002 m 6T94 L uKv Lyapunov 21=i1 0.704D 2 Logistic HT Mb1m 5m 6 ?C m“ Y wLbyN V Logistic 1=SNR1=SNR HF . 2Kv Lyapunov 9 V6 T p4 wL L u V7 D 2 Logistic iiy )( 1=SNRHpTb m 5 Logistic , 2,1 = m , 1=SNR m 6 . 2 , 2,1 = m V E Kv Lyapunov 1 p9 wL L u/ii

17、y )(1)1( + m b . 2 Kv Lyapunov kv l EE9 B. 2 Kv Lyapunov Vm 3(a)am 4(a)m 6(a) ( V A 1)1( += miH wL zBQrb iiy )(4 YV 5)/ (1)l E 3 H | 1 z Z V H 3 ZE91M1E G-P E pKv Lyapunov 1 B (2) ( E f / I nK s 9 V1 9T (3) wL Kr - wLiiy )( iiyiy )1()( iMM l u XL uL u/ 1)1( + m (4) . 2 Kv Lyapunov kv M bW # “y l EE

18、9 B. 2 Kv Lyapunov 7 O .1 . 2YAb ID 1 A.Wolf J.B.Swift, H.L.Swinney and J.A.Vastano. Determining Lyapunov exponents from a time series, Physica 16D, 71985, 285317. 2 M.T.Rosenstein, J.J.Collins and C.J.De luca. A practical method for calculating largest Lyapunov exponents from small data sets, Physi

19、ca D, 1993, 65: 117134. 3 W.Liebert, H.G.Schuster, Proper choice of the time delay for the analysis of chaotic time series. Phys.Lett.A 142 (1989) 107. 4 F.Takens. Determing strange attractors in turbulenceJ. Lecture notes in Math. 1981,898:361-381. 5 P.Grassberger, I.Procaccia. Measuring the strang

20、eness of strange attractorsJ. Physica D, 1983, 9:189-208 6 A.M.Fraser, H.L.Swinney. Independent coordinates for strange attractors form time seriesJ. Phys. Rev. A. 1986,33:1134-1140. 7 M.B.Kennel, R.Brown, H.D.I.Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical constructionJ. Phys. Rev. A 1992,45:3403. 8 J.-P. Eckmann, D.Ruelle, Ergodic theory of chaos and strange attractorsJ, Rev. Mod. Phys. 57(1985) 617 Te do (1978-) 3 i p V 3 Z_ 2 |) a HW sa T MY ? YqZ +v0 2 i 430033 “ 13476281645 (Mobile), 027-83444036 (Office) E-mail : http:/8

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报