ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:323.35KB ,
资源ID:1753391      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1753391.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(microsoft powerpoint - lec-pose [compatibility mode].pdf)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

microsoft powerpoint - lec-pose [compatibility mode].pdf

1、1Capturing, Modeling, Rendering 3D ObjectsP iti d O i t ti E ti tiosition an r en a on stimationPosition and Orientationz Localization Compute the position and orientation of “something” within an environment or relative to an object Something = robot, boat, planez Tracking Use a (custom) hardware i

2、nfrastructure to track an object and compute the position and orientation relative to a chosen originz Camera Pose Estimation Compute the position and orientation of a camera within an environment or relative to an object using vision-based methodsLocalization and Trackersz Gyroscopes/Accelerometers

3、images 2002 Encyclopdia Britannica, Inc.Localization and Trackersz Gyroscopes/AccelerometersLocalization and Trackersz Gyroscopes/Accelerometers Pros: very high accuracy Cons: drift after 10 minutes Potential solution for orientation: Resync periodically with a digital compass Potential solution for

4、 position:?Localization and Trackersz Magnetic Tracker2Localization and Trackersz Magnetic Tracker Pros: simple infrastructure Cons: not very accurate, about 1 meter radius, susceptible to distortions caused by surrounding metal structuresLocalization and Trackersz Optical Tracker (3rdTech Inc.)Loca

5、lization and Trackersz Optical Tracker (3rdTech Inc.)Localization and Trackersz Optical Tracker (3rdTech Inc.) Pros: highly accurate Cons: custom/complex infrastructure must be installed, requires line of sightMIT City Scanning Projectz http:/city.lcs.mit.edu/city.htmlTransformation of a 3D world co

6、ordinate to image coordinatesRigid body transformation: tx, ty, tz, rx, ry, rzPerspective projection: f(xw, yw, zw)Radial lens distortion: k1Resampling/scaling adjustment: Cx, Cy, sx(X, Y)3Camera Pose Estimationz Tsai Calibration External parameter calibration (same thing!)(rx,ry,rz) image plane(0,0

7、,0)(tx,ty,tz)eye(xw,yw,zw)(X, Y)Camera Pose Estimationz Tsai Calibration External parameter calibration (same thing!)z Pose Estimation Algorithm:Calibrate camera Calibrate ca ra Fix internal parameters Move camera Recompute external parameters (e.g. redo calibration) DoneCamera Pose Estimationz Tsai

8、 Calibration External parameter calibration (same thing!)z Pose Estimation Algorithm:Calibrate camera Calibrate ca ra Fix internal parameters Move camera Recompute external parameters (e.g. redo calibration) DoneCamera Pose Estimationz Calibrate with this patternCamera Pose Estimationz Then fix inte

9、rnal parameters and do pose estimationLandmark-based Camera Pose Estimationz Summary Place landmarks throughout the environment (or around the object) Obtain the projections of landmarks onto captured images Works with a calibrated traditional camera Works with a calibrated omnidirectional camera Co

10、mpute pose from the landmark projections4Landmark-based Camera Pose Estimationdf6f3f4f5f7f8cameraf1f2f9f10Landmark-based Camera Pose Estimationz Major challenges Landmark placement and correspondence Where should we place the landmarks and how do we know which one we are seeing? Pose estimation from

11、 landmarks How do we compute position and orientation from the landmarks? Landmark-Pose Optimization Can we optimize/improve estimates for both landmark positions and camera pose?Landmark Placement and Correspondencez Background: Art Gallery Problem DefinitionLandmark Placement and Correspondencez B

12、ackground: Art Gallery Problem Convex decompositionLandmark Placement and Correspondencez Background: Art Gallery Problem Creating a sufficient solution satisfying the constraints of Maximum distance to a landmark: D Minimum number of visible landmark: V Minimum angle to a pair of landmarks: ALandma

13、rk Placement and Correspondencez Background: Art Gallery Problem Creating a sufficient solution satisfying the constraints of Maximum distance to a landmark: D Minimum number of visible landmark: V Minimum angle to a pair of landmarks: ARedundancy value for landmark i is ri= wv(vmin-V) + wd(D-dmin)/

14、D + wa(amin-A)/(180-A)(iteratively remove from previous slide)5Landmark Placement and CorrespondenceV-+Landmark Placement and CorrespondenceD-+Landmark Placement and CorrespondenceA-+Landmark Placement and Correspondencez Creating a sufficient solution satisfying the constraints of Maximum distance

15、to a landmark: D Minimum number of visible landmark: V Minimum angle to a pair of landmarks: ACld i tz Can also add accuracy requ remen s Distribute landmarks so as to Guarantee a desired pose accuracy, or Compute the pose accuracy of a given placementLandmark Placement and Correspondencez Uncertain

16、ty given distances(1 or 2 distance case, d and e)Landmark Placement and Correspondencez Uncertainty given distancesdd1region of uncertainty2d36Landmark Placement and Correspondencez Uncertainty given distances and angleded12Landmark Placement and Correspondencez Correspondence and VisibilityPose Est

17、imation from Landmarksz Lets do a simple 2D examplec2=a2+b2+2abcos()xyPose Estimation from Landmarksx-axisxypost 1d1d2worldx-axisworldy-axisBADEt = d02/(d12+d22-2d1d2cosA)1/2post 2d0Ct dx = (d02+t2d12-t2d22)/(2d0)y = S(t2d12-x2)1/2 = C E = D BPose Estimation from Landmarksz Lets do a simple 3D examp

18、lexyzPose Estimation from Landmarksd1d12d14f1fd2d3d4d23d342f3f4141223347Optimizationz Use a procedure related to “bundle adjustment” A nonlinear optimization method Triggs00 Summary: Improve pose estimates Improve landmark estimates landm timates Loop back until convergesOptimizationdf6f3f4f5f7f8cam

19、eraf1f2f9f10Optimizationz Increasing minimum visible landmarks2025(cm)6432051015024681012141618Minimum number of visible fiducialsMeanposeerrorbound168421actualOptimizationz Increasing minimum subtended angle by landmarks2025(cm)64320510150 20 40 60 80 100 120 140 160Minimum subtended angleMeanposeerrorbound 168421actualOptimizationz Increasing maximum distance to landmarks2025(cm)64320510150 100 200 300 400 500 600 700 800Maximum distance to fiducials (cm)Meanposeerrorbound 168421actual

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报