ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:3.62MB ,
资源ID:1648890      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1648890.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字图像处理课件(冈萨雷斯)N08.ppt)为本站会员(谈谈)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数字图像处理课件(冈萨雷斯)N08.ppt

1、Digital Image Processing,Prof. Dr.Chen HuiSchool of ISE, Shandong University email: ,Lecture 8,Spatial Filtering,Background Smoothing Filters Sharpening Filters,Spatial Filtering no. 1,linear filter: Spatial filter, mask, template, window. nonlinear filter:Median, minimal, or maximal value of a neig

2、hborhood.,Background of Spatial Filtering,Spatial Filtering no. 2,Odd size The border?,Background of Spatial Filtering(cont.),Linear filters: the transfer function and the point spread function of a linear system are inverse Fourier transforms of each other.,s1s9 intensities of pixels. k1k9 mask coe

3、fficients. .,Spatial Filtering no. 3,Convolution mask,Smoothing Filters,Smoothing filters are used for blurring and for noise reduction. Lowpass filtering (linear) : all the coefficients be positive.,Such as, sampled by a Gaussian function,Neighborhood averaging, weighted neighborhood averaging, sca

4、led not to out of the valid gray-level range(for mn mask normalized by 1/( mn).,Spatial Filtering no. 4,Examples of averaging Filter,a) Original image, b) noise corrupted , c)e) results of smoothing template by size of 77, 9 9, and 11 11.,Spatial Filtering no. 5,Examples of averaging Filter,Spatial

5、Filtering no. 6,Irrelevant details vs. Mask size,Example of averaging Filter,Spatial Filtering no. 7,Small objects blended with background,size of mask?,Median filter (nonlinear),The gray level of each pixel is replaced by the median of the graylevels in a neighborhood of that pixel, instead of aver

6、aging.To achieve noise reduction rather than blurring.,The 5th value of a 33 window , Minimal or maximal .,Spatial Filtering no. 8,Sharpening Filters,The objective is to highlight fine detail in an image or to enhancedetail that has been blurred. Basic high-pass spatial filtering High-boost filterin

7、g Derivative filters Laplacian filters,Printing, medical, inspection, target detection,A classic implementation of sharpening filter, Eliminates zero-frequency term,Indicate positive near center, negative in the outer periphery,Spatial Filtering no. 9,Example of High-pass Filter,Reducing the average

8、 value of image to zero implies that image must have some negative gray levels. Thus involve some form of scaling/clipping so final result span the range 0, L-1,Spatial Filtering no. 10,High-boost Filtering,A high-pass filtered image may be computed as, Highpass=Original Lowpass The definition of hi

9、gh-boost or High-frequency emphasis filter isHigh boost =(A) Original Lowpass=(A-1) Original + OriginalLowpass= (A-1) Original +Highpass,w=9A-1,A=1 standard highpass result A1 part of the original is added back to highpass result, restore low frequency component. Looks more like original with edge e

10、nhancement.,Spatial Filtering no. 11,Example of High-boost Filter,a) original, b) Highpass, c) Highboost a=2, d) extend gray-level of (c),Spatial Filtering no. 12,Derivative Filters (nonlinear),Averaging pixels over a region tends to blur detail in an image. As averaging is analogous to integration,

11、 differentiation can be expected to have the opposite effect and thus sharpen an image. The gradient of f at coordinate (x,y) is defined as the vector,The magnitude of this vector ,Spatial Filtering no. 13,Derivative Filter approximation,Roberts cross-gradient operators,Prewitt operators,Spatial Fil

12、tering no. 14,Derivative Filter approximation(cont),Sobel operators,Spatial Filtering no. 15,Example of Derivative Filter,Spatial Filtering no. 16,Laplacian Filters,Laplacian operator,Spatial Filtering no. 17,Example of Derivatives,Spatial Filtering no. 18,1D edge detection,Spatial Filtering no. 18,

13、1D edge detection,Spatial Filtering no. 18,Double thin edge or?,The zero-crossings of s(x) mark possible edges.,Laplacian enhancement,Spatial Filtering no. 19,Example of Laplacian Filters,Spatial Filtering no. 20,High-boost mask,Spatial Filtering no.21,Example of High-boost Filter,Spatial Filtering

14、no.22,Example of combined filtering,Spatial Filtering no.23,Example of combined filtering(cont.),Spatial Filtering no.24,Review Questions,Explain the idea of smoothing filter Explain the idea of sharpening filter Explain the idea of media filter,Recommended Reading,Gonzalez + Woods: Chapter 3,Image Enhancement no. 37,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报