ImageVerifierCode 换一换
格式:DOC , 页数:38 ,大小:71.67KB ,
资源ID:1528349      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1528349.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于数据挖掘的遥感影像海岸带地物分类方法研究.doc)为本站会员(cjc2202537)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

基于数据挖掘的遥感影像海岸带地物分类方法研究.doc

1、环境科学专业毕业论文 精品论文 基于数据挖掘的遥感影像海岸带地物分类方法研究关键词:数据挖掘 遥感影像 海岸带地物分类摘要:本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究

2、,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿

3、江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的

4、自动分类。正文内容本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸

5、线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了

6、分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带

7、土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分

8、类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地

9、物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙

10、淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率

11、影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Q

12、uickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联

13、规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理

14、论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类

15、型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Lands

16、at TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综

17、合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果

18、精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且

19、岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类

20、型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术

21、,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本

22、文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了

23、推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工

24、岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地

25、物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性

26、,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的

27、特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证

28、据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术

29、,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。本文在“908 海岛海岸带遥感调查”课题的支持下,引入数据挖掘技术,开展了海岸线提取方法和海岸带土地利用分类方法等研究。 对于海岸线提取方法研究,针对课题调查内容,海岸线划分为人工岸线、基岩岸线、砂质岸线、粉沙淤泥质岸线和生物岸线等五种类型,本文在设计海岸线提取方法时,首先分析了不同类型岸线的特征,然后基于数据挖掘中的关联规则技术,分别提出了相应五种岸线类型的提取方法。为了验证本文岸线提取方法的有效性,选

30、取30m 分辨率的 Landsat TM/ETM+影像开展了实验研究,提取结果都优于 3 个像元。本文提出的岸线提取方法算法直观、容易实现,而且岸线提取连续。另外,为了对海岸线提取精度进行评价,提出了一种线段匹配精度评价方法。 对于海岸带地物分类方法研究,本文以课题调查中的土地利用调查分类体系为例开展研究,提出了两种地物分类方法,基于证据理论的面向对象的遥感影像海岸带地物分类方法和面向对象的高分辨率影像海岸带地物分层分类方法。 针对海岸带遥感调查中的土地利用级地物分类需要,引入了证据理论的思想,提出了基于证据理论的面向对象的遥感影像海岸带地物分类方法。为了验证方法的有效性,选取 10m 分辨率

31、的 SPOT 影像为数据源,综合考虑了光谱、纹理和形状等特征,在鸭绿江口区域进行了实验研究,分类精度达到了 80以上。该方法解决了单个特征属性类型识别时的不确定性问题,提高了分类精度。另外,为了能够处理研究区域已知样本空间不完备的情况,对基本的证据理论进行了推广。 针对调查中土地利用级地物分类需要,提出了面向对象的高分辨率影像海岸带地物分层分类方法。为了验证方法的有效性,选取 0.61m 分辨率的Quickbird 影像为数据源,在众多光谱、纹理、形状和邻居特征中,应用关联规则技术,首先找到最能够区分各种地物类型的特征属性及其相关规则,然后基于这些挖掘出来的规则实现最终的分类,分类结果精度超过

32、了 80。该方法解决了分类结果精度对专家经验的依赖,实现了精细地物的自动分类。特别提醒 :正文内容由 PDF 文件转码生成,如您电脑未有相应转换码,则无法显示正文内容,请您下载相应软件,下载地址为 http:/ 。如还不能显示,可以联系我 q q 1627550258 ,提供原格式文档。“垐垯櫃 换烫梯葺铑?endstreamendobj2x 滌?U 閩 AZ箾 FTP 鈦X 飼?狛P? 燚?琯嫼 b?袍*甒?颙嫯?4)=r 宵?i?j 彺帖 B3 锝檡骹笪 yLrQ#?0 鯖 l 壛枒l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛渓?擗#?“?# 綫 G 刿#K 芿$?7. 耟?Wa 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 皗 E|?pDb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$F?責鯻 0 橔 C,f 薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵秾腵薍秾腵%?秾腵薍秾腵薍秾腵薍秾腵薍

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报