ImageVerifierCode 换一换
格式:DOC , 页数:37 ,大小:70.95KB ,
资源ID:1519732      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1519732.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(关于树的谱半径与能量的若干问题.doc)为本站会员(cjc2202537)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

关于树的谱半径与能量的若干问题.doc

1、应用数学专业毕业论文 精品论文 关于树的谱半径与能量的若干问题关键词:完美匹配 树谱半径 图谱理论 邻接矩阵 全体特征值摘要:图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的

2、所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确

3、定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.正文内容图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研

4、究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增

5、大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被

6、揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明

7、了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#25

8、2;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配

9、的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在

10、量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量

11、与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值

12、),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研

13、究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图

14、论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着

15、显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一

16、个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还

17、可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的

18、树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其

19、分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第

20、八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对

21、值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的

22、排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.图谱理论是图论的一个重要分支,它主要利用线性代数、矩阵理论等代数工具和技巧,结合图论与组合数学的理论与方法来研究图的谱(即图的邻接矩阵的全体特征值),以及图的谱与图的结构性质、图的不变量之间的关系.由于图的谱在量子化学、电网络与振动理论中有着诸多的应用,特别是著名的H#252;ckel 分子轨道(HMO)理论与图谱理论完全等价这一事实被揭示之后,图谱理论受到了广泛的关注.谱技巧也已成为图论和组合学研究中一个重要工具. 图的

23、能量是图的与谱有关的一个重要参数,它被定义为图的所有特征值的绝对值之和.图的能量来源于化学研究领域.对于大部分碳氢化合物分子,其分子图的能量与该分子的总 -电能线性相关.特别地,研究树的能量还可以用于给出无环碳氢化合物分子的共振能. 正因为图的谱和能量有着显著的物理和化学应用背景,它们受到了众多化学家和数学家的关注.研究谱半径或能量极图,图依谱半径或能量的排序,以及图的谱半径或能量与图的其他参数之间的关系成了热门课题. 本文研究树和具有完美匹配的树的谱半径与最大度之间的关系,以及树的能量与最大度的关系.证明了对于具有较大最大度的树或具有完美匹配树,其谱半径随其最大度的增大而严格增大.应用这一关

24、系研究树和具有完美匹配的树依谱半径的排序问题,确定了树依谱半径的排序中第九到第十三个树,给出具有完美匹配的树依谱半径的排序中的第八到第二十个树的范围.论文还确定了给定最大度的树中具有最大能量的树,以及给定较大最大度的树中具有最小能量的树.特别提醒 :正文内容由 PDF 文件转码生成,如您电脑未有相应转换码,则无法显示正文内容,请您下载相应软件,下载地址为 http:/ 。如还不能显示,可以联系我 q q 1627550258 ,提供原格式文档。“垐垯櫃 换烫梯葺铑?endstreamendobj2x 滌?U 閩 AZ箾 FTP 鈦X 飼?狛P? 燚?琯嫼 b?袍*甒?颙嫯?4)=r 宵?i?j

25、 彺帖 B3 锝檡骹笪 yLrQ#?0 鯖 l 壛枒l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛渓?擗#?“?# 綫 G 刿#K 芿$?7. 耟?Wa 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 皗 E|?pDb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$F?責鯻 0 橔 C,f 薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵秾腵薍秾腵%?秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报