ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:131KB ,
资源ID:1484287      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1484287.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(统计工具箱.ppt)为本站会员(天天快乐)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

统计工具箱.ppt

1、,统计工具箱 基本统计量 常见概率分布的函数 参数估计 假设检验 方差分析与回归 综合实例,Mean函数,Syntax M = mean(A) M = mean(A,dim) Description M = mean(A) returns the mean values of the elements along different dimensions of an array. If A is a vector, mean(A) returns the mean value of A. If A is a matrix, mean(A) treats the columns of A as

2、vectors, returning a row vector of mean values. M = mean(A,dim) returns the mean values for elements along the dimension of A specified by scalar dim. For matrices, mean(A,2) is a column vector containing the mean value of each row.,Examples,A = 1 2 3; 3 3 6; 4 6 8; 4 7 7; mean(A) ans = 3.0000 4.500

3、0 6.0000 mean(A,2)ans = 2.0000 4.0000 6.0000 6.0000,离散型随机变量的E(X),求上述E(X)和E(3x2+5)的值。 x=-2 0 2 pk=0.4 0.3 0.3 sum(x.*pk) z=3*x.2+5 sum(z.*pk),其它求平均数的函数:,m = nanmean(X) returns the sample mean of a financial time series object X, treating NaNs as missing values. m is a row vector containing the mean v

4、alue of the non-NaN elements in each series. m = geomean(x) calculates the geometric mean of a sample. For vectors,geomean(x) is the geometric mean of the elements in x. For matrices,geomean(X) is a row vector containing the geometric means of each column. For N-dimensional arrays, geomean operates

5、along the first nonsingleton dimension of X.,m = harmmean(X) calculates the harmonic mean of a sample. For vectors, harmmean(x) is the harmonic mean of the elements in x. For matrices, harmm-ean(X) is a row vector containing the harmonic means of each column. For N-dimensional arrays, harmmean opera

6、tes along the first nonsingleton dimension of X.,m = trimmean(X,percent) calculates the trimmed mean of the values in X. For a vector input, m is the mean of X, excluding the highest and lowest k data values, where k=n*(percent/100)/2 and where n is the number of values in X. For a matrix input, m i

7、s a row vector containing the trimmed mean of each column of X.,数据比较,Max,min,median,mad,sort,sortrows,range. y = mad(X) returns the mean absolute deviation of the values in X. For vector input, y is mean(abs(X-mean(X). For a matrix input, y is a row vector containing the mean absolute deviation of e

8、ach column of X.,方差和标准差,Syntax V = var(X) V = var(X,1) V = var(X,w) V = var(X,w,dim) Description V = var(X) returns the variance of X for vectors. For matrices, var(X)is a row vector containing the variance of each column of X. For N-dimensional arrays, var operates along the first nonsingleton dime

9、nsion of X. The result V is an unbiased estimator of the variance of the population from which X is drawn, as long as X consists of independent, identically distributed samples. var normalizes V by N-1 if N1, where N is the sample size. This is an unbiased estimator of the variance of the population

10、 from which X is drawn, as long as X consists of independent, identically distributed samples. For N=1, V is normalized by N.,V = var(X,1) normalizes by N and produces the second moment of the sample about its mean.var(X,0) is equivalent to var(X). V = var(X,w) computes the variance using the weight

11、 vector w. The length of w must equal the length of the dimension over which var operates, and its elements must be nonnegative. The elements of w must be positive. var normalizes w to sum of 1. x=-1 -1 1 2; w=1 2 3 4;v4=var(x,w),V = var(X,w,dim) takes the variance along the dimension dim of X. Pass

12、 in 0 for w to use the default normalization by N-1, or 1 to use N. The variance is the square of the standard deviation (STD).,标准差:std,std - Standard deviation Syntax s = std(X) s = std(X,flag) s = std(X,flag,dim) Definition There are two common textbook definitions for the standard deviation s of

13、a data vector X.,and n is the number of elements in the sample.,Description,s = std(X), where X is a vector, returns the standard deviation using (1) above. The result s is the square root of an unbiased estimator of the variance of the population from which X is drawn, as long as X consists of inde

14、pendent, identically distributed samples. If X is a matrix, std(X) returns a row vector contain- ing the standard deviation of the elements of each column of X. If X is a multidimensional array, std(X) is the standard deviation of the elements along the first nonsingleton dimension of X.,s = std(X,f

15、lag) for flag = 0, is the same as std(X). For flag = 1, std(X,1) returns the standard deviation using (2) above, producing the second moment of the set of values about their mean. s = std(X,flag,dim) computes the standard deviations along the dimension of X specified by scalar dim. Set flag to 0 to

16、normalize Y by n-1; set flag to 1 to normalize by n.,Examples,For matrix X X = 1 5 9 7 15 22 s = std(X,0,1) s = 4.2426 7.0711 9.1924 s = std(X,0,2) s = 4.000 7.5056,偏度,峰度,skewness - Skewness Syntax y = skewness(X) y = skewness(X,flag),where is the mean of x, is the standard deviation of x, and E(t)

17、represents the expected value of the quantity t. skewness computes a sample version of this population value.,Description,y = skewness(X) returns the sample skewness of X. For vectors, skewness(x) is the skewness of the elements of x. For matrices, skewness(X) is a row vector containing the sample s

18、kewness of each column. For N-dimensional arrays, skewness operates along the first nonsingleton dimension of X.,y = skewness(X,flag) specifies whether to correct for bias (flag = 0) or not (flag = 1, the default). When X represents a sample from a population, the skewness of X is biased; that is, i

19、t will tend to differ from the population skewness by a systematic amount that depends on the size of the sample. You can set flag = 0 to correct for this systematic bias.,When you set flag to 1, the following equation applies:,When you set flag to 0, the following equation applies:,This bias-correc

20、ted formula requires that X contain at least three elements.,skewness(X,flag,dim) takes the skewness along dimension dim of X. skewness treats NaNs as missing values and removes them.,Examples,X = randn(5 4) X = 1.1650 1.6961 -1.4462 -0.36000.6268 0.0591 -0.7012 -0.13560.0751 1.7971 1.2460 -1.3493 0.3516 0.2641 -0.6390 -1.2704 -0.6965 0.8717 0.5774 0.9846 y = skewness(X) y = -0.2933 0.0482 0.2735 0.4641,偏度,峰度意义:,见参考文献,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报