ImageVerifierCode 换一换
格式:PPT , 页数:62 ,大小:390KB ,
资源ID:1467727      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1467727.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上财系列 金融风险控制与管理 qmr - probability and statistics.ppt)为本站会员(天天快乐)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

上财系列 金融风险控制与管理 qmr - probability and statistics.ppt

1、Quantitative Risk Management- Probability and Statistics,Ming-Heng Zhang,Purpose,Essentials of Probability of StatisticsImportant Distributions,Underlying,Assumption : X, X1, X2, is a sequence of iid non-degeneration rvs defined on a probability space , F, P with common DF.Cumulative sums,Convergenc

2、e,Convergencein probabilityprobability one or always sure,Convergence,Convergencein mean squarein distribution,Example -,ConvergenceRelationship,Inequality,Chebyshevs InequalityMakovs InequalityErgodic theorem/遍历性,Weak Law of Large Numbers - WLLN,Weak Law of Large Number (WLLN) or Law of Large Numbe

3、r (LLN)Criterion for the WLLN,Example -,Let X be symmetric with tail for some constant c0Check conditionConflict,The Strong Law of Large Numbers - SLLN,Strong Law of Large Number (SLLN)Criterion for the SLLN,The Central Limit Theorem - Application,Glivenko-Cantelli theorem(the empirical DF)Marcinkie

4、wicz-Zygmund theorem,Common Statistical Distributions the Moments,The mean or ExpectationThe k-th momentVarianceThe standard deviationModeMedian -quantileP-interquantile rangleFunction of Random g(X),Common Statistical Distributions the Moments -,From Mathematica,Combinatorial Functions,the factoria

5、l functionthe binomial coefficientthe multinomial coefficientthe Catalan numbersthe Fibonacci numbersthe Fibonacci polynomials Fibonaccithe harmonic numbers the harmonic numbers of order r,Combinatorial Functions,the Bernoulli polynomialsthe Bernoullithe Euler polynomials the Euler numbersthe Genocc

6、hi numbersStirling numbers of 1rstStirling numbers of 2nd,Combinatorial Functions,The partition function -PartitionsPn gives the number of ways of writing the integer n as a sum of positive integers, without regard to order. PartitionsQn gives the number of ways of writing n as a sum of positive int

7、egers, with the constraint that all the integers in each sum are distinct. The signature function gives the signature of a permutation. It is equal to +1 for even permutations (composed of an even number of transpositions), and to -1 for odd permutations (Levi-Civita symbol or epsilon symbol).Clebsc

8、h-Gordan coefficients 3-j symbols or Wigner coefficients 6-j symbols or Racah coefficients,Special Functions - Gamma and Related Functions,Gammas Functions,ContourPlotAbsGammax + i y, x, -3, 3, y, -2, 2, PlotPoints-50 ,Special Functions - Zeta and Related Functions,Riemann zeta functionRiemann-Siege

9、l functionsStieltjes constants the generalized Riemann zeta function or Hurwitz zeta function,Common Statistical Distributions Bernoulli,the probability distribution for a single trial in which success, corresponding to value 1, occurs with probability p, and failure, corresponding to value 0, occur

10、s with probability 1-p.,Common Statistical Distributions - Binomial,the distribution of the number of successes that occur in n independent trials, where the probability of success in each trial is p.,Common Statistical Distributions Binomial-Beta,Binomial-Beta,Common Statistical Distributions Hyper

11、-geometric,Hyper-geometric - used in place of the binomial distribution for experiments in which the n trials correspond to sampling without replacement from a population of size ntotal with nsucc potential successes.,Common Statistical Distributions Negative-binomail,Negative-binomial - the distrib

12、ution of the number of failures that occur in a sequence of trials before n successes have occurred, where the probability of success in each trial is p.,Common Statistical Distributions Negative-binomail-Beta,Negative-binomial-Beta,Common Statistical Distributions - Poisson,Poisson - describes the

13、number of points in a unit interval, where points are distributed with uniform density m.,Common Statistical Distributions Poisson-Gamma,Poisson-Gamma,Common Statistical Distributions - Beta,Beta - When X and Y have independent gamma distributions with equal scale parameters, the random variable X/(

14、X+Y) follows the beta distribution with parameters and , where and are the shape parameters of the gamma variables.,Common Statistical Distributions - Uniform,Uniform,Common Statistical Distributions - Cauchy,Cauchy - If X is uniformly distributed on -p, p, then the random variable tanX follows a Ca

15、uchy distribution with a=0 and b=1.,Common Statistical Distributions - Gamma,Gamma,Common Statistical Distributions - Exponential,Exponential,Common Statistical Distributions Gamma-Gamma,Gamma-Gamma,Common Statistical Distributions Chi-Squared,Chi-Squared - the distribution of a sum of squares of v

16、unit normal random variables. Also called as a chi-square distribution with v degrees of freedom.,Common Statistical Distributions Noncentral Chi-Squared,Non-central Chi-Squared,Common Statistical Distributions Inverted-Gamma,Inverted-Gamma,Common Statistical Distributions Inverted-Chi-Squared,Inver

17、ted-Chi-Squared,Common Statistical Distributions Squared-root Inverted-Gamma,Squared-root Inverted-Gamma,Common Statistical Distributions - Pareto,Pareto,Common Statistical Distributions Inverted-Pareto,Inverted-Pareto,Common Statistical Distributions - Normal,Normal / Gaussian,Common Statistical Di

18、stributions - Student,Student,Common Statistical Distributions Snedecor F,Snedecor F,Common Statistical Distributions - Logistic,Logistic - used in place of the normal distribution when a distribution with longer tails is desired.,Common Statistical Distributions - Weibull,Weibull - used in engineer

19、ing to describe the lifetime of an object (e.g., alpha=1.5 beta=3.5 in fig.).,Common Statistical Distributions - Laplace,Laplace - the distribution of the difference of two independent random variables with identical exponential distributions.,Common Statistical Distributions - Rayleigh,Rayleigh,Com

20、mon Statistical Distributions - extreme value distribution,The extreme value distribution, the limiting distribution for the largest values in large samples drawn from a variety of distributions, including the normal distribution; the limiting distribution for the smallest values in such samples can

21、 be obtained by multiplying Extreme Value Distribution random variables by -1. referred to as the log-Weibull distribution because of logarithmic relationships between an extreme value distributed random variable and a properly shifted and scaled Weibull distributed random variable,Common Statistica

22、l Distributions - halfnormal,Halfnormal - proportional to the distribution Normal Distribution with 0, 1/(theta Sqrt2/Pi) limited to the domain 0, ).,Common Statistical Distributions - Mutinomial,A k-variate multinomial distribution with index n and probability vector theta may be used to describe a

23、 series of n independent trials, in each of which just one of mutually exclusive events is observed with probability , thetak,Common Statistical Distributions - Negative Mutinomial,A k-variate negative multinomial distribution with success count n and failure probability vector theta may be used to

24、describe a series of n independent trials, in each of which there may be a success or one of mutually k exclusive modes of failure. The tth failure mode is observed with probability ,thetat , and the trials are discontinued when n successes are observed,Common Statistical Distributions - Poisson,A k

25、-variate multiple Poisson distribution with mean vector =0 +1, 0 +k is a common way to generalize the uni-variate Poisson distribution. Here the random k-vector X=X1,X k following this distribution is equivalent to Y=Y1,Y k, where Yt is a Poisson random variable with mean t, t=0,1,.,k.,Common Statis

26、tical Distributions - Dirichlet,Common Statistical Distributions - Multinomial-Dirichlet,Common Statistical Distributions - Multi-Normal,A k-variate multinormal distribution with mean vector mu and covariance matrix lambda is denoted N(mu,sigma2),Common Statistical Distributions - Multivariate Stude

27、nt,A vector that has a multivariate Student t distribution can also be written as a function of a multinormal random vector. Let X be a standardized multi-normal vector with covariance matrix R and let S2 be a chi-square variable with m degrees of freedom. Then X divided by S with sqrtm has a multiv

28、ariate distribution with correlation matrix R and m degrees of freedom, denoted t(R,m).,Common Statistical Distributions - Multivariate Wishart,If Xt is distributed multivariate normal with the zero mean and the covariance matrix Sigma, and X denotes the data matrix composed of the row vectors Xt, t

29、hen the matrix X has a Wishart distribution with scale matrix Sigma and m degrees of freedom parameter. The Wishart distribution is most typically used when describing the covariance matrix of multi-normal samples.,Common Statistical Distributions - Normal-Gamma,Common Statistical Distributions - Mu

30、ltivariate Normal-Gamma,Common Statistical Distributions - Multivariate Normal-Wishart,Common Statistical Distributions - Multi-Normal,A k-variate multinormal distribution with mean vector mu and covariance matrix lambda is denoted N(mu,sigma2),Common Statistical Distributions - Bilateral Pareto,End of Chapter 2,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报