ImageVerifierCode 换一换
格式:PDF , 页数:17 ,大小:352.65KB ,
资源ID:13893442      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-13893442.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(信号与系统信号与系统信号与系统 (23).pdf)为本站会员(职教中国)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

信号与系统信号与系统信号与系统 (23).pdf

1、BEIJING JIAOTONG UNIVERSITYThe Course Group of Signals and Systems, Beijing Jiaotong University. P. R. CHINA. Copyright 2020Signals and Systems Complex frequency-domain analysis for systemsz-domain description for D-T LTI systemsTransfer function and system propertiesImplementation structure for LTI

2、 systemsz-domain analysis for LTI system responsehkH(z)xk yzs k = xk*hkX(z) Yzs (z) = X(z)H(z)The relation between H(z) and Yzs(z)z-domain analysis for LTI system responseTime domainz-domaindifference equation response ykresponse Y(z) in z-domainsolving the equationequation in z-domain(convolution o

3、peration)z-domain analysis for LTI system responseunilateralz-transformsolving the equation(algebraic operation)inversion of unilateralz-transformSolution: Y z Xz y y zz Y z y z Y z( ) 3 2 ( )( ) 1 ( ) 1 21 2 1yk3yk1+2yk2 = xkInitial conditions: y1=1, y2=3, input xk=(4)k uk, determine yk.According t

4、o the time shift property of unilateral z-transformZ y k u k z Y z y 1 ( ) 11Z y k u k z Y z z y y 2 ( ) 1 221Converting the difference equation into z-domain equation Y z z z y z y y X z( )(1 3 2 ) 3 1 2 1 2 2 ( )1 2 1Example 7.23: The difference equation of a causal LTI system is z z z zY z X zy z

5、 y y1 3 2 1 3 2( ) ( )3 1 2 1 2 2 11 2 1 21Yzi(z) Yzs(z) Y z z z y z y y X z( )(1 3 2 ) 3 1 2 1 2 2 ( )1 2 1X z zHzYz(z) 1 3 2()1()12zsSolution:yk3yk1+2yk2 = xkInitial conditions: y1=1, y2=3, input xk=(4)k uk, determine yk.Example 7.23: The difference equation of a causal LTI system is|z|2zzY z X zz

6、32( ) ( )2zs2 z z zz z z1 2 4/ 5 2 / 3 8 /15 y k u kk k k3 15 5 ( 2) (4) ( 1) 2 8 1zszzYzXz1 3 2()()12zs ZzX z u kzk4( ) (4) z z zzz( 1)( 2) 42Solution:yk3yk1+2yk2 = xkInitial conditions: y1=1, y2=3, input xk=(4)k uk, determine yk.Example 7.23: The difference equation of a causal LTI system is|z|4Co

7、mplete response: z z z zY z zz z z3 2 1 2()2 9 7 162zi y k u kkk 7( 1) 16( 2) ziy1=1, y2=3 zzYzy z y y1 3 2()3 1 2 1 2 212zi1 uky k y k y k k k k 53 15 ( 2) (4) ( 1) 46 8 34zs ziSolution:yk3yk1+2yk2 = xkInitial conditions: y1=1, y2=3, input xk=(4)k uk, determine yk.Example 7.23: The difference equat

8、ion of a causal LTI system is|z|2(1) transfer function H(z), impulse response hk.(2) zero-input response yzik, zero-state response yzsk.(3) the structure diagram of the system H(z).Input xk = 3kuk, and y1=3, y2=1.Example 7.24: The difference equation of a causal LTI systemDetermine:yk3yk1+2yk2 xk+xk

9、1(1) transfer function H(z), impulse response hkSolution: As the system is causal, we can use unilateral z-transformY(z)3(z1Y(z) y1) + 2(z2Y(z) z1y1 + y2) X(z) + z1X(z) z z z zY z X zy z y y z1 3 2 1 3 2( ) ( )3 1 2 1 2 2 (1 )1 2 1 211 zzzzX z z zHzzzYz)32( ) ( 1)( 2()( +1)()1, | | 2(1 )11z2sz1=0, z

10、2= 1; p1=1, p2=2yk3yk1+2yk2 xk+xk111)z( mI20)z( eRSolution: According to the transfer function H(z) z z z zH z zz z z( 1)( 2) ( 1) ( 2)( ) , | | 2z( 1) 2 3As the ROC of H(z) does not include the unit circle in z-plane, the causal LTI system is unstable. h k u k u kk 2 3 2 11)z( mI20)z( eRBy PFE, the

11、 impulse response is(1) transfer function H(z), impulse response hkSolution: z z z zY z X zy z y y z1 3 2 1 3 2( ) ( )3 1 2 1 2 2 11 2 1 211zyzy yzYz 223 11()3 2 2112zi1 z z z zz z z1 3 2 1 29 6 2 8121 y k u k u kk 8(2) ziy1=3, y2 =1(2) zero-input yzik, zero-state response yzsk z z z zY z X zy z y y

12、 z1 3 2 1 3 2( ) ( )3 1 2 1 2 2 11 2 1 211 z z z z zY z X zzz1 3 2 1 3 2 1 3( ) ( )1 1 11 2 1 2 1zs11 z z zz z zz1 1 2 1 31 6 6(1 )(1 2 ) 1 3111 1 11 1 11 y k u k u k u kkk 6(2) 6(3) zsxk = 3kuk(2) zero-input yzik, zero-state response yzskSolution:11)z(Y- -)z(X321-z1-z z z z zHzz z z( 1)( 2) 1 3 2()

13、( 1) 1121Rewrite H(z) in the form z1(3) the structure diagram of the system H(z)Solution:Given the zero-state response of a causal LTI system y k u kkk 3 3(0.5) (1/ 3) zsInput signal is xk=uk. Determine:(1) transfer function H(z) and its pole-zero plot.(2) the difference equation describing the LTI

14、system.(3) system impulse response hk.(4) the system stability.z-domain analysis for LTI system responsepole-zero plot zzzXzHzYz(2)3)()11(2zsz21 y k y k y k x k66 1 2 51 h k u k u kkk23 3 2 11The causal LTI system is stable.z-domain analysis for LTI system response2jj1 1/21/3)zIm (10 )zRe (AcknowledgmentsMaterials used here are accumulated by authors for years with helpfrom colleagues, media or other sources, which, unfortunately, cannotbe noted specifically. We gratefully acknowledge those contributors.z-domain analysis for LTI system response

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报