ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:1.48MB ,
资源ID:1357950      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1357950.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.1.3空间向量的数量积运算.ppt)为本站会员(天天快乐)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

3.1.3空间向量的数量积运算.ppt

1、3.1.3空间向量的 数量积运算,一、引入,1.共线向量定理:,2.共线向量定理的推论:(1)若直线l过点A且与向量 平行,则(2)三点P、A、B共线的充要条件有:,3.共面向量定理:,4.P、A、B、C四点共面充要条件:,一、两个向量的夹角,两条相交直线的夹角是指这两条直线所成的锐角或直角,即取值范围是(0,90,而向量的夹角可以是钝角,其取值范围是0,180,B,A,一、空间向量数量积的定义,已知空间两个非零向量 , 则叫做 的数量积,记作 , 即,注意: 两个向量的数量积是数量,而不是向量. 规定:零向量与任意向量的数量积等于零.,不一定为锐角,不一定为钝角,三、空间两个向量的数量积的性

2、质,(1)空间向量的数量积具有和平面向量的数量积完全相 同的性质.(2)性质(2)是用来判断两个向量是否垂直,性质(5)是 用来求两个向量的夹角(3)性质(3)是实数与向量之间转化的依据,空间向量数量积可以解决的立体几何问题:,3)向量的夹角(两异面直线所成的角);,2)证明垂直问题;,1)线段的长(两点间的距离);,,也就是说,四、空间向量数量积的运算律,与平面向量一样,空间向量的数量积满足如下运算律:,向量数量积的运算适合乘法结合律吗?即(ab)c一定等于a(bc)吗?,已知空间向量a,b满足|a|=4,|b|=8,a与b的夹角是150,计算:(1)(a+2b)(2n-b);(2)|4a一

3、2b|,如图,已知空间四边形ABCD的每条边和对角线长都等于a,点E、F、G分别是AB、AD、DC的中点。求下列向量的数量积:,练习1,A,B,C,D,E,F,G,在平行四边形ABCD中,AB=AC=1,ACD=90,将它沿对角线AC折起,使AB与CD成60角,求B,D间的距离,练习2,练习3,解:,已知空间四边形OABC中,M,N,P,Q分别为BC,AC,OA,OB的中点,若AB=OC,求证:PMQN,证明:,练习4,练习5,如图,在正三棱柱 中,若 ,则 与 所成的角的大小为( ) A. B. C. D.,证明:,如图,已知:,求证:,在直线l上取向量 ,只要证,为,逆命题成立吗?,分析:

4、同样可用向量,证明思路几乎一样,只不过其中的加法运算用减法运算来分析.,分析:要证明一条直线与一个平面垂直,由直线与平面垂直的定义可知,就是要证明这条直线与平面内的任意一条直线都垂直.,例2:(试用向量方法证明直线与平面垂直的判定定理) 已知直线m ,n是平面 内的两条相交直线,如果 m, n,求证: .,m,n,取已知平面内的任一条直线 g ,拿相关直线的方向向量来分析,看条件可以转化为向量的什么条件?要证的目标可以转化为向量的什么目标?怎样建立向量的条件与向量的目标的联系?,共面向量定理.,例2:已知直线m ,n是平面 内的两条相交直线,如果 m, n,求证: .,小 结: 通过学习,体会到我们可以利用向量数量积解决立体几何中的以下问题: 1、证明两直线垂直; 2、求两点之间的距离或线段长度; 3、证明线面垂直; 4、求两直线所成角的余弦值等等.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报