ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:1.70MB ,
资源ID:1345341      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1345341.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学:3.2.1《几种不同增长的函数模型(3)》课件(新人教a版必修1).ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学:3.2.1《几种不同增长的函数模型(3)》课件(新人教a版必修1).ppt

1、几种不同增长的函数模型,福安一中 吴 彬,例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:,方案一:每天回报40元;,方案二:第一天回报10元,以后每天比前 一天多回报10元;,方案三:第一天回报0.4元,以后每天的回 报比前 一天翻一番。,请问,你会选择哪种投资方案呢?,思考,比较三种方案每天回报量(2) 比较三种方案一段时间内的总回报量,哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案。,分析,我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据。,解:设第x天所得回报为y元,则 方案一:每天回报40元;

2、 y=40 (xN*),方案二:第一天回报10元,以后每天比前一天多回 报10元; y=10x (xN*),方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。 y=0.42x-1 (xN*),图112-1,从每天的回报量来看: 第14天,方案一最多: 每58天,方案二最多: 第9天以后,方案三最多;,有人认为投资14天选择方案一;58天选择方案二;9天以后选择方案三?,三种方案的累计回报表,投资8天以下(不含8天),应选择第一种投资方案;投资810天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案。,例题的启示,解决实际问题的步骤:,实际问题,读懂问题,抽象概括

3、,数学问题,演算,推理,数学问题的解,还原说明,实际问题的解,例2、某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,但奖金数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求呢?,(1)、由函数图象可以看出,它在区间10,1000上递增,而且当x=1000时,y=log71000+14.555,所以它符合资金不超过5万元的要求。,模型y=log7x+1,令f(x)=

4、log7x+1-0.25x, x 10,1000.利用计算机作出函数f(x)的图象,由图象可知它是递减的,因此,f(x)f(10) -0.31670,即 log7x+11)和幂函数y=xn (n0),通过探索可以发现:,在区间(0,+)上,无论n比a大多少,尽管在x的一定范围内,ax会小xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当xx0时,就会有axxn.,结论2:,一般地,对于对数函数y=logax (a1)和幂函数y=xn (n0),通过探索可以发现:,在区间(0,+)上,随着x的增大,logax增大得越来越慢,图象就像是渐渐地与x轴平行一样。尽管在x的一定变化范围内, l

5、ogax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当xx0时,就会有logax1),y=logax (a1)和y=xn (n0)都是增函数。,(2)、随着x的增大, y=ax (a1)的增长速度越来越快,会远远大于y=xn (n0)的增长速度。,(3)、随着x的增大, y=logax (a1)的增长速度越来越慢,会远远小于y=xn (n0)的增长速度。,总存在一个x0,当xx0时,就有logaxxnax,例1 同一坐标系中,函数yx27和y2x的图象如图.试比较x27与2x的大小.,50,40,30,20,10,5,10,yx27,y2x,x,y,O,例2 已知函数yx2和ylog2(x1)的图象如图,试比较x2与log2(x1)的大小.,4,3,2,1,-1,2,4,x,y,O,yx2,ylog2(x1),1.复习课本p95-101,3.继续完成课本p101练习.(做在书上或课堂练习本上),课后作业,2.完成课本p82复习参考题A组10及B组5,6(做在作业本上),4.预习课本p101-106试做p106练习1,2.),5.三维创新p74-773.2第一课时,福安一中高一数学组2008年10月31制作,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报