ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:203.50KB ,
资源ID:1345142      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1345142.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学:3.1.2《两角和与差的正弦、余弦、正切公式》课件(新人教a版必修4)河北地区专用.ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学:3.1.2《两角和与差的正弦、余弦、正切公式》课件(新人教a版必修4)河北地区专用.ppt

1、3.1.2 两角和与差的正弦、 余弦、正切公式,问题提出,1.两角差的余弦公式是什么?它有哪些基本变式?,2.利用两角差的余弦公式固然能解决一些问题,但范围太窄,我们希望在此基础上获取一系列有应用价值的公式,实现资源利用和可持续发展战略.,3.有了两角差的余弦公式,自然想得到两角差的正弦、正切公式,以及两角和的正弦、余弦、正切公式,对此,我们将逐个进行探究,让希望成为现实.,两角和与差的正弦、余弦、正切公式,探究(一):两角和与差的基本三角公式,思考1:注意到(),结合两角差的余弦公式及诱导公式,cos()等于什么?,cos()coscossinsin.,思考2:上述公式就是两角和的余弦公式,

2、记作 ,该公式有什么特点?如何记忆?,sin()sincoscossin,sin()sincoscossin,思考4:上述公式就是两角和与差的正弦公式,分别记作 , ,这两个公式有什么特点?如何记忆?,思考6:上述公式就是两角和与差的正切公式,分别记作 , ,这两个公式有什么特点?如何记忆?公式成立的条件是什么?,思考5:正切函数与正弦、余弦函数之间存在商数关系,从 、 出发,tan()、tan()分别与tan、tan有什么关系,思考7:为方便起见,公式 称为和角公式,公式 称为差角公式.怎样理解这6个公式的逻辑联系?,C(),探究(二):两角和与差三角公式的变通,思考1:若coscosa,s

3、insinb,则cos()等于什么?,思考2:若sincosa,cossinb,则sin()等于什么?,思考4:在ABC中,tanA,tanB,tanC三者有什么关系?,思考5:sinxcosx能用一个三角函数表示吗?,思考3:根据公式 ,tantan可变形为什么?,tantan=tan(+)(1- tantan),tanA+tanB+tanC=tanAtanBtanC,理论迁移,例1 已知 ,是第四象限角,求 , , 的值.,例3 求证: .,小结作业,1.两角差的余弦公式 是两角和与差的三角系列公式的基础,明确了各公式的内在联系,就自然掌握了公式的形成过程.,2.公式 与 , 与 与 的结构相同,但运算符号不同,必须准确记忆,防止混淆.,3.公式都是有灵性的,应用时不能生搬硬套,要注意整体代换和适当变形.,作业:P131练习:3,4,5,6.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报